Telecoms, Datacoms, Wireless, IoT


Sub-GHz wireless links

18 May 2016 Telecoms, Datacoms, Wireless, IoT

Connecting devices is a key requirement in the IoT, and this can be an even greater challenge in an industrial environment.

The Industrial IoT (IIoT) requires many devices to be connected reliably in environments that are harsh both physically and electromagnetically. This can present a challenge for wireless systems, especially in the busy 2,4 GHz band where Wi-Fi and Bluetooth operate.

Using licence-free bands under 1 GHz – 433 MHz, 868 MHz or 915 MHz – gives longer range than 2,4 GHz but lower data rates. This works for industrial applications that are not required to stream video data but transfer data from sensors and diagnostic information from equipment. This also allows developers to trade off data rate and range for lower power consumption, allowing longer battery life or energy harvesting power sources. This can provide a significant saving by reducing operating costs with regards to replacing batteries with cycles as long as 20 years with the right design.

However, these links need to be highly reliable, and that depends on the combination of the transceiver radio hardware, microcontroller and embedded protocol stacks. Having a range of options in all three of these areas provides system developers with the flexibility to optimise their designs for the specific industrial implementation.

Narrowband sub-GHz links can reach up to 10 km as there is less attenuation from walls or buildings, reducing or eliminating the need for gateway or repeater devices and so reducing the cost of the network implementation. The less crowded spectrum also means easier transmissions and fewer retries, which is more efficient and saves battery power.

The radio sensitivity is inversely proportional to channel bandwidth, so a narrower bandwidth creates higher receiver sensitivity and allows efficient operation at lower transmission rates. For example, at 300 MHz, if the transmitter and receiver crystal errors are both 10 ppm (parts per million), the error is 3 kHz for each. For the application to efficiently transmit and receive, the minimum channel bandwidth is twice the error rate, or 6 kHz, which is ideal for narrowband applications. The same scenario at 2,4 GHz requires a minimum channel bandwidth of 48 kHz, which wastes bandwidth for narrowband applications and requires substantially more operating power.

One of the disadvantages can be that a larger antenna is needed for a sub-GHz node, with a 17 cm antenna needed at 433 MHz. However, this can be less of an issue for industrial networks where space is less of a premium, and can be overcome with newer design techniques such as fractal antennas for shorter range implementations or using higher bands such as 915 MHz where an 8 cm antenna is sufficient.

The EZR32LG330 wireless microcontroller from Silicon Labs (Figure 1) combines an ARM Cortex-M3 CPU, USB and sub-GHz radio with low-energy optimisations for IoT designs. The EZR32LG family of pin-compatible devices scales with 64/128/256 KB of Flash and supports Silicon Labs’ EZRadio or EZRadioPRO transceivers covering the sub-GHz frequency bands from 142 to 1050 MHz. These devices have sensitivity of up to –133 dBm using the EZRadioPro to give the maximum range or reduced to minimise the power consumption.

Figure 1. The EZR32LG330 is the first wireless microcontroller from Silicon Labs.
Figure 1. The EZR32LG330 is the first wireless microcontroller from Silicon Labs.

The device covers all major frequency bands and achieves optimal phase noise, blocking and selectivity performance for narrowband and licensed band applications, such as FCC Part 90 and 169 MHz wireless Mbus. Adjacent channel selectivity of 69 dB with 12,5 kHz channel spacing means that there is minimal interference between channels and any other electrical noise can be efficiently filtered out to prevent interference with the radio link. Communications between the radio and MCU are done over USART, PRS and IRQ, which requires the pins to be configured as shown in Table 1.

Table 1. Configuring the link between the controller and the RF transceiver in Silicon Labs’ EZR32LG330.
Table 1. Configuring the link between the controller and the RF transceiver in Silicon Labs’ EZR32LG330.

A key element in the EZR32LG is an AES accelerator to provide security for the wireless node. This handles the AES encryption and decryption with 128-bit or 256-bit keys.

Encrypting or decrypting one 128-bit data block takes 52 cycles with 128-bit keys and 75 cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers so all write accesses to the AES block must be via 32-bit operations.

To link to sensors or directly to the equipment, there are 38 general purpose input/output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can be individually configured as either an output or input. More advanced configurations such as open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pins such as timers, pulse width modulator outputs or USART communication.

The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Designers can also make use of Silicon Labs’ Peripheral Reflex System where the input value of a pin can be routed through other peripherals. This provides flexibility for pin allocations so that changes to board designs can be easily made either during development or between product generations.

Higher level support is also possible on an integrated device. The SimpleLink CC1310 controller developed by Texas Instruments combines the RF transceiver with a microcontroller that is optimised for a real-time operating system as well as dedicated, independent controllers for power management and sensors.

The sub-GHz transceiver has its own Cortex-M0 microcontroller (Figure 2) to handle the time-critical aspects of the radio protocols without needing the main processor, leaving more resources for the user application. It can support a wide range of modulation formats, frequency bands and accelerators, from 625 bps for long range and high robustness to data rates up to 4 Mbps, with a range of modulation formats from multilevel FSK and MSK to on-off keying (OOK).

Figure 2. The SimpleLink CC1310 includes three separate microcontrollers for the 
RF, sensors and higher level protocol stacks and user applications, all configured by 
a real-time operating system.
Figure 2. The SimpleLink CC1310 includes three separate microcontrollers for the RF, sensors and higher level protocol stacks and user applications, all configured by a real-time operating system.

The 48 MHz Cortex-M3 microcontroller then supports multiple physical layers and RF standards and runs the RTOS that configures the power and clock management. The sensor controller is an independent processor to control a range of peripherals so that the main CPU does not have to wake up, for example to execute an ADC sample or poll a digital sensor over SPI, saving both current and wakeup time.

There can be advantages to having a separate transceiver. The MRF49XA from Microchip (Figure 3) is aimed at bidirectional, short-range wireless applications in the 434/868/915 MHz ISM frequency band and frequency shift keying (FSK) modulation with a frequency hopping spread spectrum (FHSS) capability similar to that used in the Bluetooth standard, and can be easily integrated with Microchip’s 8- 16- or 32- PIC controllers.

Figure 3. The MRF49XA from Microchip is a standalone RF transceiver that interfaces with low cost 8, 16 or 32 bit PIC microcontrollers.
Figure 3. The MRF49XA from Microchip is a standalone RF transceiver that interfaces with low cost 8, 16 or 32 bit PIC microcontrollers.

FHSS provides the ability to move between different frequency bands in a set order to avoid channels that become too noisy, but can interfere with adjacent direct sequence spread spectrum (DSSS) channels. This provides high resistance to adjacent channel interference, and the bit error rate (BER) and larger communication coverage of the lower frequencies, along with higher output power, is suited to industrial IoT designs.

In order to minimise the total system cost, the transceiver uses a low-cost, generic 10 MHz crystal, a bypass filter and an affordable microcontroller. The MRF49XA provides a clock signal for the microcontroller and avoids the need for a second crystal on the circuit board, and works with PIC microcontrollers through a 4-wire SPI, interrupt and reset. The interface between the microcontroller and MRF49XA is shown in Figure 4.

Figure 4. Linking Microchip’s MRF49XA RF front end to a microcontroller for a sensor node in the industrial IoT .
Figure 4. Linking Microchip’s MRF49XA RF front end to a microcontroller for a sensor node in the industrial IoT .

The MRF49XA RF transceiver is also available on a PICtail daughter board for integration with the 8-bit PIC18 Explorer and 16-/32-bit Explorer 16 modular microcontroller development boards.

Conclusion

Sub-GHz designs can dramatically extend the battery life of a wireless sensor node in the industrial Internet of Things. When there are thousands of nodes in a network, the operating cost of battery replacement can be prohibitive, so reducing the replacement cycle to 10 or even 20 years can make a significant difference.

By trading off narrowband data rates and range for battery life in the sub-GHz bands, with either an integrated device or separate transceiver and low-cost microcontroller, a developer can optimise the design of the node to get the best overall performance and feed essential data from equipment into the Internet of Things.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
Fast and reliable 4G connectivity worldwide
TRX Electronics DSP, Micros & Memory
Powered by a powerful Quectel LTE Cat 4 modem, the Arduino Pro 4G module’s fast data throughput and high bandwidths ensure reliable and quick data download and upload, even in remote locations.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...