Circuit & System Protection


Thermal management materials

16 July 2014 Circuit & System Protection

During use, some electronic components can generate significant amounts of heat. Failure to effectively dissipate this heat away from the component and the device can lead to reliability concerns and reduce operational lifetimes.

Newton’s law of cooling states that the rate of loss of heat is proportional to the temperature difference between the body and its surroundings. Therefore, as the temperature of the component increases and reaches its equilibrium temperature, the rate of heat loss per second will equate to the heat produced per second within the component. This temperature may be high enough to significantly shorten the life of the component or even cause the device to fail. It is in such cases that thermal management measures need to be taken.

The same considerations can be applied to a complete circuit or device which incorporates heat producing individual components. Heat is lost from a component to its surroundings at the surface of the component. The rate of loss of heat will increase with the surface area of the component; a small device producing 10 Watts will reach a higher temperature than a similar powered device with a larger surface area.

This is where heatsinks are used – varying in size and shape, they can be designed to offer a significantly increased surface area to maximise heat dissipation. They are typically connected to components which generate a large amount of thermal energy when in operation and therefore dissipate such energy away from the device to avoid failure due to overheating.

Heat sinks have proven to be highly effective over the years, however in order to ensure full contact and therefore maximum efficiency, thermal management products are used in conjunction.

Metal surfaces, even when polished to a fine degree, have a certain amount of roughness. It can therefore be deduced that when two metal surfaces are placed together contact is not 100% and there will always be an air gap between the two surfaces. The use of a thermal interface material between such gaps ensures complete contact between the two surfaces and in turn more efficient heat conductance.

The ongoing trend for product miniaturisation – coupled with more modern, higher-powered devices – has ensured that efficient thermal management is an essential part of both modern and future electronics design, the LED lighting market being just one example.

Electrolube’s thermal management products also provide solutions for greater efficiency in green energy development; photovoltaic inverters – which are known to be particularly sensitive to temperature; connections between the heat-pipe and water storage tank for solar heating applications; hydrogen fuel cells; wind power generators; and many more applications besides.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Generate waveforms at 10 GS/s
Vepac Electronics Computer/Embedded Technology
New flagship arbitrary waveform generator cards from Spectrum Instrumentation generate waveforms with 2,5 GHz bandwidth and 16-bit vertical resolution.

Read more...
60 MHz 16-bit AWG
Vepac Electronics Test & Measurement
Siglent’s SDG1000X Plus series function/arbitrary waveform generator offers a maximum output frequency of 60 MHz, 16-bit vertical resolution, 1 GSa/s sampling rate, and 8 Mpts arbitrary waveform length.

Read more...
Clearing the Static: Key principles of ESD control in electronics manufacturing
Actum Electronics Circuit & System Protection
Effectively managing electrostatic discharge is essential in electronics manufacturing to ensure not only product reliability, but also worker safety.

Read more...
SBC with Intel N-series processor
Vepac Electronics Editor's Choice
The UP 710S represents the evolution of the credit card-sized form factor, adding new, sought-after features and performance.

Read more...
A perfect match for next-gen computing
Vepac Electronics AI & ML
Teguar’s collaboration with Hailo marks a significant step forward in their mission to provide powerful and reliable computing solutions for a wide range of industries.

Read more...
AAEON introduces Amston Lake to processor options
Vepac Electronics AI & ML
Embedded computing company AAEON has launched the PICO-ASL4 and GENE-ASL6, both featuring the new Intel Atom x7000RE processor series for the edge.

Read more...
Open-source flexibility for IoT gateway
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The SRG-CM4 brings all the open-source flexibility of the Raspberry Pi OS and ecosystem to AAEON’s signature rugged, durable gateway design to create a truly industry-ready, modular system.

Read more...
HTML5 WebPanel with Linux, Android, or AutomationBrowser
Vepac Electronics Opto-Electronics
Having a front protection rating of IP65, and additional features such as Wi-Fi, Bluetooth, USB, RS232 integrated, these panels are an excellent solution for most industrial applications.

Read more...
Clearing the Static: Three steps for a dry ESD packaging system
Actum Electronics Circuit & System Protection
For optimal storage, it’s essential to complete the dry-packaging system by adding Desiccant Packs and Humidity Indicator Cards.

Read more...
Digital PSU with four variable outputs
Vepac Electronics Test & Measurement
The PeakTech 6215 is a laboratory power supply with four separate voltage outputs, each one infinitely variable using the rotary controls on the front of the unit.

Read more...