Power Electronics / Power Management


Keep the battery in mind

4 September 2013 Power Electronics / Power Management

When it comes to designing the latest electronic device or gadget, all too often the battery is the last thing to be considered, leading to performance issues, safety concerns and, in some extreme cases, costly redesigns. With this in mind, Uniross has compiled the following list of factors to keep in mind when designing electronic equipment which relies on a battery for its source of power.

Consult a specialist: whilst the Internet is a great source of information, it can also be inaccurate and unreliable. Rather consult with a battery engineer or specialist before starting any new development.

Use commonly available batteries: Always try to design equipment around commonly available battery sizes and chemistries. Due to economies of scale, mass produced batteries are always cheaper and more readily available.

Dimensional tolerances: Although batteries are generally manufactured according to standard sizes, it is quite common to find marginal dimensional differences between manufacturers and even batches. Where possible, try to design equipment to accommodate these dimensional tolerances. This will also allow you to change manufacturers later down the line, should the need arise.

Operating temperature: All batteries, no matter the chemistry or manufacturer, are susceptible to extreme temperatures, be they high or low. It is therefore imperative to consider the environmental operating temperatures in which the battery will be placed. These temperatures can have an adverse effect on the performance of the battery.

Allow batteries to breathe: Where possible, try to design the battery compartment to allow the battery to breathe (vent) and expand or contract. Batteries can expand and contract during operation, and in worst-case scenarios, even vent dangerous gases. A battery compartment which allows for this phenomenon is good design practice.

Avoid additional heat: Batteries are very susceptible to high temperatures, so try to locate tham as far away as possible from any heat source to prevent service degradation. A provision for ventilation or insulation can help.

Battery contacts: The use of good quality battery contacts is essential to good battery performance. Pure nickel is one of the best materials that one can use in the manufacturing of a battery contact.

Low-voltage shutoff: Always design equipment to switch off after the battery voltage has dropped below the functional limit of the device. This is especially true of devices which leave the battery on a virtual short circuit when the voltage level has dropped. Electrolyte leakage can occur under these conditions.

Service life: Not all batteries will give the same service life. In addition, there are many factors which can affect the service life of a battery; factors such as environmental conditions (high and low temperatures), operational conditions (rate of discharge / depth of discharge), all of which contribute towards the service or cycle life of the battery. So, if you are expecting to get 1000 cycles from a rechargeable battery, for example, you absolutely have to consider the conditions which you are subjecting the battery to. If uncertain, rather have a battery specialist perform a life cycle simulation test. That way you can be certain that your battery will indeed give you the service life you’re expecting.

Transportation requirements: Most batteries are considered to be hazardous by the major airlines and their regulating bodies, thus classifying them as restricted cargo. This does not mean that you cannot transport batteries by air, but it is increasingly difficult to do so, especially if the equipment you designed contains a lithium type battery. Before you start designing, simply consult with a battery specialist who can inform you of the transport regulations and restrictions for the various battery chemistries, and avoid costly expenses after the fact.

For more information contact Uniross Batteries, +27 (0)11 466 1156, [email protected], www.uniross.co.za.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wine farm turns to solar installation for power
Current Automation Power Electronics / Power Management
Slanghoek Wine farm opted into a power purchase agreement to lower overall electricity costs and enter a true sustainable future, with a price-competitive edge on lower running costs.

Read more...
Industrial PSU family
Brabek Power Electronics / Power Management
The RACPRO1 family of PSUs supports a universal DC input voltage range from 430 to 850 V DC, allowing the parts to support renewable energy and microgrid applications.

Read more...
Integrated POL voltage regulators
EBV Electrolink Power Electronics / Power Management
Infineon’s TDA38807 and TDA38806 are their highest density high-efficiency integrated point-of-load (IPOL) solutions for smart enterprise systems.

Read more...
Hi-Rel quarter-brick converters
Accutronics Power Electronics / Power Management
Gaia Converter’s quarter-brick series DC-DC power modules provides output power levels ranging from 75 to 250 W in fixed output voltages.

Read more...
1700 V GaN Switcher IC
Future Electronics Power Electronics / Power Management
Power Integrations has introduced a new member of its InnoMux-2 family of single-stage regulated multi-output offline power supply ICs, the industry’s first 1700 V gallium nitride switch.

Read more...
How ADI battery management solutions empower safer, smarter robots
Altron Arrow Editor's Choice Power Electronics / Power Management
Choosing an appropriate battery pack and its accompanying battery management system is a critical decision in designing an autonomous mobile robot.

Read more...
Industrial power supply range
RFiber Solutions Power Electronics / Power Management
SynQor’s ruggedised AC-DC and DC-DC converters and filters are designed for a wide range of industrial applications, including those required to withstand harsh environments.

Read more...
PSUs for industrial applications
Power Electronics / Power Management
RECOM’s REDIIN120/240/480 series of AC-DC converters perfectly corresponds with customer needs by exhibiting high efficiency and low energy consumption at no load.

Read more...
Highest density automotive-grade power modules
Altron Arrow Power Electronics / Power Management
Vicor has released three automotive-grade power modules for 48 V EV systems, which deliver industry-leading power density.

Read more...
MOSFET for automotive applications
Altron Arrow Power Electronics / Power Management
Infineon’s OptiMOS 7 100 V is offered in the company’s versatile and robust, high-current SSO8 5 x 6 mm2 SMD package.

Read more...