Wireless vibration sensing of industrial machine health
26 June 2013
Analogue, Mixed Signal, LSI
Analog Devices has introduced a wireless vibration sensing system that allows industrial systems operators to remotely monitor production equipment health, improve system performance and reduce maintenance costs.
The new networked system includes the ADIS16229 iSensor wireless vibration sensor node, which combines dual-axis digital MEMs (micro-electromechanical systems) acceleration sensing with advanced frequency-domain and time-domain signal processing.
The sensing system also includes the ADIS16000 gateway node, which supports up to six ADIS16229 sensors at one time using a proprietary wireless protocol, managed through an SPI interface compatible with most embedded processor platforms.
The wireless function enables the remote monitoring of equipment in hard to reach or dangerous locations, while the vibration sensing and detection node is easy to install into existing infrastructure and allows continual monitoring that can be used to evaluate equipment performance and schedule predictive maintenance.
The ADIS16229 captures shifts in equipment performance through direct analysis and reporting of the frequency-domain signature using a 512-point, real-valued FFT (fast Fourier transform), FFT magnitude averaging and programmable spectral alarms. An FFT record storage system offers users the ability to track changes over time and capture FFTs with multiple decimation filter settings.
Further reading:
Infineon launches Edge Ai software solution
Altron Arrow
Analogue, Mixed Signal, LSI
Infineon has introduced DEEPCRAFT, a new software solution category brand for Edge AI and machine learning, after the company recognised the huge potential of Edge AI for the market.
Read more...
16-bit voltage output denseDAC
Altron Arrow
Analogue, Mixed Signal, LSI
The AD5766 uses a versatile four-wire serial interface that operates at clock rates of up to 50 MHz for write mode, and is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards.
Read more...
AFE enables the software-defined factory
Avnet Silica
Analogue, Mixed Signal, LSI
With its software configurable analogue inputs, where each input can be configured for voltage, current, resistance, or temperature, NXP’s N-AFE enables a new level of flexibility.
Read more...
Precision voltage reference
Altron Arrow
Analogue, Mixed Signal, LSI
The ADR1001 is a fully integrated, ultra-low drift, buried Zener precision voltage reference solution in a single chip.
Read more...
Microphones enable low-power always-on state
Avnet Abacus
Analogue, Mixed Signal, LSI
TDK Corporation has announced its InvenSense SmartSound T5848 I2S microphones to enable intelligent keyword, voice command, and sound detection at ultra-low power.
Read more...
Low power, low-noise amplifier
Altron Arrow
Analogue, Mixed Signal, LSI
The ADL8141 is a low power consumption, low-noise amplifier that operates from 14 to 24 GHz, and draws a supply current of 25 mA from a 2 V supply.
Read more...
QLC Flash memory with the latest BiCS technology
EBV Electrolink
Analogue, Mixed Signal, LSI
KIOXIA has implemented the groundbreaking CBA (CMOS directly Bonded to Array) technology, which enables the creation of higher density devices and an industry-leading interface speed of 3,6nbsp;Gbps.
Read more...
Precision op-amp
Altron Arrow
Analogue, Mixed Signal, LSI
The ADA4099-1 and ADA4099-2 are single/dual robust, precision, rail-to-rail input/output operational amplifiers with inputs that operate from -VS to +VS and beyond, which is referred to as Over-The-Top.
Read more...
Using linear regulators as a filter
Altron Arrow
Editor's Choice Analogue, Mixed Signal, LSI
Different circuits can be used to filter a supply voltage, and this article explains the main differences between using an LC filter and a linear regulator for filtering.
Read more...
High-speed PIN diode
Altron Arrow
Analogue, Mixed Signal, LSI
Vishay’s new high-speed Silicon PIN diode is able to detect both visible and near infra-red radiation over a wide spectrum range from 350 to 1100 nm.
Read more...