Design Automation


Agilent updates RF design software

23 January 2013 Design Automation

Agilent Technologies announced shipment of Advanced Design System 2012, its flagship RF and microwave EDA software platform. ADS 2012 features new capabilities that improve productivity and efficiency for all applications the system supports and breakthrough technologies applicable to GaAs, GaN and silicon RF power-amplifier multichip module design.

User interface enhancements improve design efficiency and productivity, such as dockable windows for quickly accessing frequently used dialog boxes. Updated load pull and amplifier design guides offer mismatch simulation and make it easy to see amplifier performance at a specific output power level or a specific amount of gain, respectively.

Dramatically improved integration with EMPro enables 3D electromagnetic component designs to be saved as database cells for use directly in ADS. A new ADS electro-thermal simulator incorporates dynamic temperature effects to improve accuracy in ‘thermally aware’ circuit simulation results.

Multichip module electromagnetic simulation setup and Finite Element Method simulation of different technologies allows users to analyse electromagnetic interactions between circuits and interconnects, wire bond and flip-chip solder bumps in typical multichip RF power amplifier modules.

New model support for Agilent’s artificial neural network-based NeuroFET model (extracted by Agilent’s IC-CAP device modelling software) enables more accurate FET modelling and simulation results.

For more information contact Andrew Hutton, RF Design, +27 (0)21 555 8400, [email protected], www.rfdesign.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
IoT in a Box
RF Design Telecoms, Datacoms, Wireless, IoT
RAKwireless and Datacake have collaborated on a solution called ‘Real IoT in a Box’ to address the complexities of deploying IoT solutions, particularly when it comes to LoRaWAN.

Read more...
Direction-finding antenna board
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox’s ANT-B11 Bluetooth 5.1 direction-finding antenna board is a compact Bluetooth Low-Energy angle-of-arrival antenna and sensor board combined.

Read more...
DC to 40 GHz termination
RF Design Enclosures, Racks, Cabinets & Panel Products
The TS400HM from Inmet by Spectrum Control is a 50 O termination that operates from DC to 40 GHz, and can handle an average input power of 1 W.

Read more...
Multi-band satellite modules
RF Design Telecoms, Datacoms, Wireless, IoT
The UBX-R52/S52 Series from u-blox are Multi-band LTE-M/NB-IoT/Satellite Modules that operate in 3GPP cellular bands from 450 MHz to 2,46 GHz and 1,5 to 1,7 GHz for satellite connectivity.

Read more...
IO Ninja debugging tool
RF Design News
Tibbo has released a major update to IO Ninja, its versatile communications debugging tool for Windows, Linux, and macOS.

Read more...
5G RedCap and its current environment
RF Design Telecoms, Datacoms, Wireless, IoT
5G RedCap is expected to be a key driver of the transition from 4G to 5G technology for many IoT applications.

Read more...
Altium provides free training
Design Automation
There is no longer any excuse not to master Altium Designer with the company now offering both advanced instructor-led three-day training and an on-demand video series.

Read more...
2 GHz RF amplifier
RF Design Telecoms, Datacoms, Wireless, IoT
The GRF9461 from Guerrilla RF is an RF gain block that operates from 40 MHz to 2,0 GHz and provides a gain of 19,8 dB with a noise figure of 1,8 dB.

Read more...
All-new NarrowBand-Internet of Things platform
RF Design Telecoms, Datacoms, Wireless, IoT
Cavli’s C42GM is an LTE CAT M/NB1/NB2 compatible IoT-Smart Module that comes with an integrated eSIM (MMF2) provision resulting in its globe roaming capability.

Read more...