Analogue, Mixed Signal, LSI


3D location sensing solution

31 October 2012 Analogue, Mixed Signal, LSI

STMicroelectronics has introduced a new pressure sensor that allows portable devices to calculate their vertical elevation relative to sea-level with very high accuracy. This means that the mobile device will know not only on which floor of a building it is located, but almost on which step of the staircase.

Accurate location of mobile devices will be the key enabler for many emerging location-based services (LBS), which are widely expected to be the next wave of ‘killer applications’ in the mobile world. The challenge is to provide the means of identifying the location of the mobile device in three dimensions in a way that meets a variety of conflicting constraints including spatial resolution, reliability, physical size, robustness and cost.

For the horizontal part of the location (latitude and longitude), the universally adopted solution is GNSS (Global Navigation Satellite System), which allows the horizontal position of the device to be calculated to within a metre in optimum conditions where the device can receive signals from four or more satellites.

ST has already demonstrated a solution for indoor navigation developed in conjunction with CSR that can locate devices horizontally and vertically, even in the absence of any satellite signals.

For the third dimension (vertical elevation), atmospheric pressure can provide greater resolution than GNSS – especially when fewer than four satellite signals are visible – as pressure drops steadily with increased elevation.

ST’s new pressure sensor can accurately measure air pressure from 260 millibars, which is the typical air pressure at a height of around 10 km (about 1500 m higher than the summit of Mount Everest) to 1260 millibars, which is the typical air pressure at 1800 m below sea-level, about half the depth of the deepest mine ever dug.

Housed in a tiny 3 x 3 mm package and offering low-voltage operation and low power consumption, the new device is ideal for use in smartphones, sports watches and other portable equipment, as well as in weather stations and automotive and industrial applications. The LPS331AP has already been adopted for use in Samsung’s latest and most advanced smartphone.

The pressure-sensing device is fabricated using a proprietary MEMS technology called ‘VENSENS’, that allows the pressure sensor to be fabricated on a monolithic silicon chip. Manufacturing the device in this way eliminates wafer-to-wafer bonding and maximises reliability.

The sensing element in the LPS331AP is based on a flexible silicon membrane formed above an air cavity with a controlled gap and defined internal pressure. The membrane is very small compared to traditional silicon micro-machined membranes and is protected from breakage by built-in mechanical stoppers.

A piezoresistor, a tiny structure whose electrical resistance varies as the membrane flexes in response to changes in the external pressure, is embedded in the membrane and the change in resistance is monitored, thermally compensated and converted to a digital pressure value that can be read by the equipment’s host processor using the industry-standard I2C or SPI interfaces.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

High-speed PIN diode
Altron Arrow Analogue, Mixed Signal, LSI
Vishay’s new high-speed Silicon PIN diode is able to detect both visible and near infra-red radiation over a wide spectrum range from 350 to 1100 nm.

Read more...
Analogue front end for sensor measurements
Electrocomp Analogue, Mixed Signal, LSI
The NJU9103 AFE from Nisshinbo is a tiny analogue front end, with a 16-bit resolution ADC and up to 512 x signal amplification from the programmable gain amplifier.

Read more...
Single-channel software configurable I/O
Altron Arrow Analogue, Mixed Signal, LSI
These use cases of the AD74115H include analogue output and input, digital output and input, resistance temperature detector (RTD), and thermocouple measurement capability.

Read more...
Current-sense amplifier with PWM rejection
Altron Arrow Analogue, Mixed Signal, LSI
Analog Devices’ AD8410A is a high voltage, high bandwidth current-sense amplifier that features an initial gain of 20 V/V and a 2,2 MHz bandwidth.

Read more...
Combining a LPF and ADC driver for a 20 Vp-p signal
Altron Arrow Analogue, Mixed Signal, LSI
A mixed-signal ADC driver circuit’s optimum performance depends on multiple variables: the driver’s settling time, the RC filter’s time constant, driving impedance, and the ADC sampling capacitor’s kickback current, all interact during acquisition time and contribute towards sampling errors.

Read more...
Pressure sensor with NextNav certification
EBV Electrolink Analogue, Mixed Signal, LSI
STMicroelectronics’ LPS22DF pressure sensor has received a NextNav certification, which guarantees performance and reliability for geolocation and other types of applications.

Read more...
Reference design for Raspberry Pi analogue I/O
Analogue, Mixed Signal, LSI
Analogue Devices has published a reference design for ±10 V analogue input and ±15 V analogue output for Raspberry Pi platforms.

Read more...
Multi-zone distance sensor with 90° field of view
Avnet Silica Analogue, Mixed Signal, LSI
STMicroelectronics has revealed a new FlightSense multi-zone distance sensor, with 90° field of view, to bring lifelike situational awareness to applications like home automation, computers, robots, and smart equipment.

Read more...
Six-axis IMU with Qvar sensing channel
Altron Arrow Analogue, Mixed Signal, LSI
The LSM6DSV16X from STMicroelectronics is a high-performance, low-power six-axis IMU, featuring a three-axis digital accelerometer and a three-axis digital gyroscope.

Read more...
Bidirectional current-sense amplifier with PWM
RS South Africa Analogue, Mixed Signal, LSI
The MAX49925 from Analogue Devices is a bidirectional current-sense amplifier (CSA) with an input common-mode range that extends from -40 to 76 V, making it suitable for 48 V HEV applications where there are large automotive transients.

Read more...