Analogue, Mixed Signal, LSI


Company resurrects obsolete chips

2 March 2011 Analogue, Mixed Signal, LSI

Rochester Electronics is touting the combination of semiconductor recreation and continuing manufacturing as a cost-effective and time-saving alternative to system redesign when critical semiconductors are no longer available from the original manufacturer. As the world’s largest authorised manufacturer of discontinued semiconductors, the company has established a process that provides customers with a replica device that matches the original semiconductor’s physical features, layer-by-layer and pin-for-pin, and is guaranteed to perform exactly as the original.

Even when the IP is no longer available from the original manufacturer, Rochester’s experienced design engineers can deconstruct and electrically analyse a device, redesign it, and reengineer it onto a matched mature foundry process. Rochester can then test all circuit parameters with a collection of custom developed tools to analyse device characterisation.

Rochester’s unique Semiconductor Replication Process (SRP) guarantees that replicated devices perform as effectively as the original semiconductor devices. The company has successfully completed 83 semiconductor replication projects in the last 18 months and is currently engaged in more than 30 additional re-creation projects.

For more information visit www.rocelec.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Infineon launches Edge Ai software solution
Altron Arrow Analogue, Mixed Signal, LSI
Infineon has introduced DEEPCRAFT, a new software solution category brand for Edge AI and machine learning, after the company recognised the huge potential of Edge AI for the market.

Read more...
16-bit voltage output denseDAC
Altron Arrow Analogue, Mixed Signal, LSI
The AD5766 uses a versatile four-wire serial interface that operates at clock rates of up to 50 MHz for write mode, and is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards.

Read more...
AFE enables the software-defined factory
Avnet Silica Analogue, Mixed Signal, LSI
With its software configurable analogue inputs, where each input can be configured for voltage, current, resistance, or temperature, NXP’s N-AFE enables a new level of flexibility.

Read more...
Precision voltage reference
Altron Arrow Analogue, Mixed Signal, LSI
The ADR1001 is a fully integrated, ultra-low drift, buried Zener precision voltage reference solution in a single chip.

Read more...
Microphones enable low-power always-on state
Avnet Abacus Analogue, Mixed Signal, LSI
TDK Corporation has announced its InvenSense SmartSound T5848 I2S microphones to enable intelligent keyword, voice command, and sound detection at ultra-low power.

Read more...
Low power, low-noise amplifier
Altron Arrow Analogue, Mixed Signal, LSI
The ADL8141 is a low power consumption, low-noise amplifier that operates from 14 to 24 GHz, and draws a supply current of 25 mA from a 2 V supply.

Read more...
QLC Flash memory with the latest BiCS technology
EBV Electrolink Analogue, Mixed Signal, LSI
KIOXIA has implemented the groundbreaking CBA (CMOS directly Bonded to Array) technology, which enables the creation of higher density devices and an industry-leading interface speed of 3,6nbsp;Gbps.

Read more...
Precision op-amp
Altron Arrow Analogue, Mixed Signal, LSI
The ADA4099-1 and ADA4099-2 are single/dual robust, precision, rail-to-rail input/output operational amplifiers with inputs that operate from -VS to +VS and beyond, which is referred to as Over-The-Top.

Read more...
Using linear regulators as a filter
Altron Arrow Editor's Choice Analogue, Mixed Signal, LSI
Different circuits can be used to filter a supply voltage, and this article explains the main differences between using an LC filter and a linear regulator for filtering.

Read more...
High-speed PIN diode
Altron Arrow Analogue, Mixed Signal, LSI
Vishay’s new high-speed Silicon PIN diode is able to detect both visible and near infra-red radiation over a wide spectrum range from 350 to 1100 nm.

Read more...