Telecoms, Datacoms, Wireless, IoT


Novel low-power broadband amplifier

3 February 2010 Telecoms, Datacoms, Wireless, IoT

Broadband amplifiers are critical elements in contemporary high-bandwidth wired and wireless communication systems. Such amplifiers are typically designed using distributed amplifiers (DAs) that incorporate transmission line theory to obtain a relatively high gain-bandwidth product (fT).

However, the DA-based design is beset with several shortcomings, including high DC power consumption and the need for a larger surface area. Furthermore, achieving high bandwidth in such amplifiers requires the use of transistors offering high fT, but this usually results in higher fabrication costs, since currently existing fabrication technology offers very low yields. In addition, this design is known to reduce reliability of the transistors, and cause 3 dB losses at the input and output terminals due to the need for 50 Ω impedance matching circuits.

Researchers from the University of California have now invented a novel broadband amplifier that claims to overcome all of the above-mentioned challenges, paving the way for a reliable and cost-effective alternative. The new design method offers desirable gain with a large bandwidth and yet consumes low power. Furthermore, it also ensures low reflection coefficients at the input and output terminals, limits the loss in the circuit, and offers good overall reliability. Also, the new design occupies a smaller area and requires lower DC power consumption.

The UCI researchers developed this novel amplifier by combining a three-stage amplifier design and ensured high performance even without a distributed amplifier. The new invention therefore overcomes most of the limitations of conventional designs.

Typically, the reason for low transistor reliability is the need to operate it at high current densities. The new design, however, facilitates operations even at typical current densities, thus reducing stress on the transistors, and consequently improving their working lifetimes. The novel design also dispenses of the need for 50 Ω impedance matching circuits, and thus helps to avoid the 3 dB loss, and yet permits low levels for S11 and S22 over the operating bandwidth. Such incremental design innovations thus facilitate a low-power broadband amplifier capable of providing significantly high gain-bandwidth product without the need for a distributed amplifier design.

This novel broadband amplifier should benefit numerous applications in fibre-optic communications and wireless communication systems. It also holds considerable potential for future millimetre wave communication circuits requiring significant amplification. In particular, the invention could serve as a modulator driver for limiting automatic gain control and could enable good transimpedance amplifiers. Furthermore, the versatile amplifier can be used to work with several frequency bands in general purpose wireless communications and in testing equipment. Besides these, the amplifier can also find great utility in the field of electronic warfare in military communication systems.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 464 2402, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved