News


Advances in organic solar cell research

19 August 2009 News

Scientists at the National Institute of Standards and Technology (NIST) in the US have deepened their understanding of the complex films at the heart of organic solar power cells, and believe that economically viable cells that are cheap, flexible and simple to manufacture, could be on the horizon.

Organic photovoltaics, which rely on organic molecules to capture sunlight and convert it into electricity, are a hot research area because in principle they have significant advantages over traditional rigid silicon cells. Organic photovoltaics start out as a kind of ink that can be applied to flexible surfaces to create solar cell modules that can be spread over large areas as easily as unrolling a carpet. They would be much cheaper to make and easier to adapt to a wide variety of power applications, but their market share will be limited until the technology improves. Even the best organic photovoltaics convert less than 6% of light into electricity and last only a few thousand hours. “The industry believes that if these cells can exceed 10% efficiency and 10 000 hours of life, technology adoption will really accelerate,” says NIST’s David Germack. “But to improve them, there is critical need to identify what is happening in the material, and at this point, we are only at the beginning.”

The NIST team has advanced that understanding with their latest effort, which provides a powerful new measurement strategy for organic photovoltaics that reveals ways to control how they form. In the most common class of organic photovoltaics, the ‘ink’ is a blend of a polymer that absorbs sunlight, enabling it to give up its electrons, and ball-shaped carbon molecules called fullerenes that collect electrons. When the ink is applied to a surface, the blend hardens into a film that contains a haphazard network of polymers intermixed with fullerene channels. In conventional devices, the polymer network should ideally all reach the bottom of the film while the fullerene channels should all reach the top, so that electricity can flow in the correct direction out of the device. However, if barriers of fullerenes form between the polymers and the bottom edge of the film, the cell’s efficiency will be reduced.

By applying X-ray absorption measurements to the film interfaces, the team discovered that by changing the nature of the electrode surface, it will repulse fullerenes (like oil repulses water) while attracting the polymer. The electrical properties of the interface also change dramatically. The resultant structure gives the light-generated photocurrent more opportunities to reach the proper electrodes and reduces the accumulation of fullerenes at the film bottom, both of which could improve the photovoltaic’s efficiency or lifetime.

“We have identified some key parameters needed to optimise what happens at both edges of the film, which means the industry will have a strategy to optimise the cell’s overall performance,” Germack says. “Right now, we are building on what we have learned about the edges to identify what happens throughout the film. This knowledge is really important to help industry figure out how organic cells perform and age so that their lifespans will be extended.”





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Technical resource centre for smart cities
News
Mouser’s infrastructure and smart cities content hub features comprehensive articles, blogs, eBooks, and products from Mouser’s technical team and trusted manufacturing partners.

Read more...
UFS Flash named Best in Show
EBV Electrolink News
KIOXIA Europe GmbH was named as winner in the Memory & Storage category of the Embedded Computing Design (ECD) electronica Best in Show Awards at the recently held electronica 2024.

Read more...
Save the date for Securex South Africa 2025
News
Home to Africa’s largest collection of security solutions, Securex South Africa returns to Gallagher Convention Centre in Midrand from 3 to 5 June 2025.

Read more...
Trina Storage ranked in top 10
News
Amidst the global energy storage market, Trina Storage has once again earned recognition from authoritative institutions with its outstanding innovation capabilities and global layout.

Read more...
2025 outlook for DRAM is poor
News
According to TrendForce, weak demand outlook and rising inventory and supply forecast to pressure DRAM prices down for 2025.

Read more...
Price hike to challenge energy reforms
News
Eskom’s proposed 44% price hike could undermine renewable energy gains despite tech innovation.

Read more...
IO Ninja debugging tool
RF Design News
Tibbo has released a major update to IO Ninja, its versatile communications debugging tool for Windows, Linux, and macOS.

Read more...
Young SA robotics team takes world title
News
In a demonstration of innovation and teamwork, Texpand, a South African youth robotics team based in Cape Town, recently made history by winning the 2024 FIRST Tech Challenge (FTC) World Championships.

Read more...
From the editor's desk: A brave new world
Technews Publishing News
The technology Tesla currently uses in its cars from the batteries, power electronics, controllers, through to the mechanics, gearboxes, and the AI inference computer and software have are incorporated in the development of Optimus, allowing the development of the robot to gain impressive features in a relatively short time span.

Read more...
Seven Labs partnership enhances local electronics distribution
Seven Labs Technology News
Aimed at revolutionising the electronics distribution landscape in South Africa, Seven Labs has announced a partnership with LCSC, one of China’s most reputable electronics distributors.

Read more...