Manufacturing / Production Technology, Hardware & Services


MSD handling: desiccants and nitrogen, myths and opportunities

13 May 2009 Manufacturing / Production Technology, Hardware & Services

To avoid problems with micro cracks and delaminating during the processing of electronic components, it is necessary to take appropriate storage into account.

Since the introduction of lead-free soldering and the higher processing temperatures involved, the consequent vapour pressure within components increases considerably (up to 30 bars).

Manufacturers deliver these sensitive components in effective protective packaging to avoid absorption of humidity during transport and storage. After opening the package, the countdown begins and the components start absorbing humidity. Depending upon ambient humidity and temperature, the components can be safely used only within a limited time period. This time period is classified by the IPC/JEDEC J-Std 033B.1. When a component has exceeded the allowed exposure time, the humidity can be decreased through a baking process, after which the component should be processed immediately.

Repeated absorption of humidity must be avoided, because although the standard allows a second baking, the process induces oxidation. This in turn reduces the wetting ability of the connection surfaces. To fight this well-known effect, many suppliers of drying ovens provide an additional reduction of oxygen by means of a nitrogen atmosphere or vacuum during the drying process. Setting the clock back to zero for the component can take as long as 48 hours, inevitably bringing about considerable costs for nitrogen, and only a low rest-oxygen content of less than 13 ppm stops the oxidation.

Because of the considerably higher content of tin in lead-free soldering alloys, the need to consider oxidation protection during storage has increased in importance. This is caused by higher oxidation percentage of these alloys and the generally worse wet ability and flow properties of lead-free soldering alloys.

The oxygen causing the oxidation originates from two different sources. The first is the oxygen molecule O2, found worldwide in our atmosphere. However, because of its atomic bond it only occurs at temperatures higher than 40°C. The second and in fact more aggressive bearer of oxygen is the water molecule H2O, in which the oxygen atom is only weakly connected, and a considerable oxidation percentage can already be observed at low temperatures. This means that over and above the content of oxygen, the content of humidity is an even bigger contributor to the oxidation percentage in stored components.

Technically it is possible to solve both problems at the same time. However, it is important to avoid heating above 40°C thereby eliminating the air-oxygen as reaction partner, and to provide strong dehumidification of the air at the same time. To achieve this, dry storage systems have been designed that can produce internal atmospheres of below 1% RH. Only by this extremely low content of humidity it is possible to protect not only the components against the additional absorption of moisture, but also to remove the moisture already absorbed within the packaging of the components. As the accompanying graph below shows, even storage in very clean nitrogen does not provide actual dehumidification of components, as levels under 0,1 Wt % are not possible.

Moisture humidification and dehumidification over time
Moisture humidification and dehumidification over time

When considering how the speed of diffusion affects the drying of components, the variables of concentration and temperature are decisive. Ultra low humidity desiccant cabinets are now available that can sustain a low rest-humidity of <1% RH and the latest technology even provides recovery times (after door openings) of less than one minute. This thereby offers not just safe storage but effective drying of components, even at room temperature. This is impossible to achieve with nitrogen alone. Components stored in ultra low RH cabinets utilising such technology are thus at the same time dehumidified and prepared to be processed.

By virtue of the oxidation protection explained previously, longer periods of storage without the use of moisture barrier bags are also practical.

For more information contact Shanelo Technologies, +27 (0)74 319 6785, [email protected], www.shanelo.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The ultimate range for design and repair
RS South Africa Manufacturing / Production Technology, Hardware & Services
Whether adapting existing systems or maintaining essential equipment, design and repair play a crucial role in ensuring efficiency and longevity.

Read more...
Next-generation SPI and AOI series
Techmet Manufacturing / Production Technology, Hardware & Services
Saki Corporation has launched its next-gen series for SPI and AOI featuring a modular design for enhanced inspection efficiency and automation.

Read more...
Yamaha’s Advanced Safety Package eases factory-safety
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT Section has extended availability of the Advanced Safety Package, which contains optional features to elevate printer and mounter safety above and beyond mandatory levels.

Read more...
Case Study: Siemens Valor automation solution
ASIC Design Services Editor's Choice Manufacturing / Production Technology, Hardware & Services
Electronics manufacturer BMK used Siemens Valor to enhance accuracy and speed up bill-of-materials quotations.

Read more...
The factory beat
Electronic Industry Supplies Manufacturing / Production Technology, Hardware & Services
Change is the only constant across today’s complex manufacturing landscape. The surge of digital transformation, spearheaded by Industry 4.0, has redefined how factories operate, build, and evolve.

Read more...
Microtronix powers up 2025 with smart meter production for Eskom
Microtronix Manufacturing Manufacturing / Production Technology, Hardware & Services
Microtronix has kicked off 2025 with a significant milestone: the production of smart meters for Eskom, designed to assist customers with load reduction initiatives.

Read more...
Reliable X-ray inspection system
MyKay Tronics Manufacturing / Production Technology, Hardware & Services
Inspecting long PCBs that are often used in sectors like telecommunications, automotive, and energy, where high reliability is required, presents several unique challenges.

Read more...
G-Tera high-speed SMT printer
Techmet Manufacturing / Production Technology, Hardware & Services
The new generation of automatic printing presses from GKG, the all-new G-Tera, is equipped with a 3,0-megapixel LIGHT-Bolt CCD camera, an upgraded conveyor system, and an enhanced printing system.

Read more...
Extending AI assistance in AOI
Yamaha Motor Europe N.V. Manufacturing / Production Technology, Hardware & Services
Artificial Intelligence is renowned for image recognition and classification skills, suggesting a great fit with the objectives of automatic optical inspection.

Read more...
Design & Repair range from RS Pro
RS South Africa Manufacturing / Production Technology, Hardware & Services
The launch of the new RS PRO Design & Repair range caters to a wide array of industries, including discrete and process manufacturing, energy & utilities, facilities management, and intralogistics.

Read more...