Telecoms, Datacoms, Wireless, IoT


Wireless mesh networking: ZigBee vs DigiMesh

6 August 2008 Telecoms, Datacoms, Wireless, IoT

Mesh networking is a powerful way to route data. Range is extended by allowing data to hop node to node and reliability is increased by ‘self healing’, the ability to create alternate paths when one node fails or a connection is lost.

One popular mesh networking protocol is ZigBee, which is specifically designed for low-data rate, low-power applications. Digi International offers several products based on ZigBee. Additionally, the company has developed an alternate mesh protocol named DigiMesh. Both ZigBee and DigiMesh offer unique advantages important to different applications, as this article considers.

ZigBee nodes

The ZigBee protocol defines three types of nodes: coordinators, routers and end device, with a requirement of one coordinator per network - see Figure 1.

Figure 1. A typical ZigBee network
Figure 1. A typical ZigBee network

While all nodes can send and receive data, there are differences in the specific roles they play.

Coordinators are the most capable of the three node types. There is exactly one coordinator in each network and it is the device that establishes the network originally. It is able to store information about the network, including security keys.

Routers act as intermediate nodes, relaying data from other devices.

End devices can be low-power/battery-powered devices. They have sufficient functionality to talk to their parents (either the coordinator or a router) and cannot relay data from other devices. This reduced functionality allows for the potential to reduce their cost.

ZigBee offers these advantages:

* Open standard with interoperability between vendors.

* Option for lower cost, reduced function end nodes.

DigiMesh nodes

DigiMesh has only one node type. As an homogenous network, all nodes can route data and are interchangeable - see Figure 2. There are no parent-child relationships. All can be configured as low-power/battery powered devices.

Figure 2. A typical DigiMesh network
Figure 2. A typical DigiMesh network

DigiMesh offers these advantages:

* Network setup is simpler.

* More flexibility to expand the network.

* Increased reliability in environments where routers may come and go due to interference or damage.

Sleeping routers

Allowing a node to sleep reduces power consumption, which is especially helpful for nodes that are battery powered. Currently, ZigBee allows for end devices to sleep but not routers or coordinators. DigiMesh allows all nodes to sleep, thereby increasing battery life.

Sleeping is allowed by time synchronisation. Some systems require a gateway or coordinator to establish time synchronisation. A significant advantage of DigiMesh is that it eliminates the single point of failure associated with relying on a coordinator or gateway. Instead, it establishes time synchronisation through a nomination and election process, enabling the network to operate autonomously.

Additional differences

Since ZigBee is an open standard, it offers the potential for interoperability with devices made by different vendors. This provides the ability to have over-the-air firmware updates. Furthermore, ZigBee offers established profiles for common applications such as energy management and lighting controls. A good selection of diagnostic support tools, like RF packet sniffers, is also available.

Table 1. Comparison between ZigBee and DigiMesh
Table 1. Comparison between ZigBee and DigiMesh

DigiMesh, as a proprietary protocol, allows for tighter control of code space and therefore more room for growth in features. It is available on platforms with longer range and more RF data rate options. Frame payload is generally larger, which can improve throughput for applications that send larger data blocks. Additionally, DigiMesh uses a simplified addressing method, which improves network setup and troubleshooting.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...
RFID in aviation: the ultimate solution to baggage mishandling
Osiris Technical Systems Editor's Choice Telecoms, Datacoms, Wireless, IoT
Creating a solution that enables real-time tracking of airline baggage on a global scale seems like an impossible task when considering the number of airlines, airports, and passengers that flow through and between them.

Read more...