Manufacturing / Production Technology, Hardware & Services


Increased use of QFNs brings new challenges to light

23 July 2008 Manufacturing / Production Technology, Hardware & Services

The never ending quest to jam ever more functionality into smaller and smaller packages has increased the popularity of yet another high performance device that is quickly gaining favour among handheld product designers and manufacturers. It is the QFN: an abbreviation that stands for quad flat no-lead.

First patented in 1999, use of the QFN has steadily increased in recent years, especially with the proliferation of smaller multifunction handheld devices. QFNs (pictured) are just as the name describes: a flat plastic package with perimeter leads underneath the device and a large pad in the centre. Basically, it is a QFP (quad flat pack) with no leads, and the connections are made by soldering the perimeter lands underneath directly to the pads on the printed circuit board (PCB). In addition to their small form factor advantages, QFNs offer excellent electrical and thermal performance.

While these devices provide clear benefits there are, of course, some challenges as well.

At the package level, there are manufacturing hurdles to overcome, such as issues with wire bonding on polyimide and the die to pad ratio effect on JEDEC performance and, once the devices are made, the next challenge is assembling them onto the PCB and ensuring the long term reliability of the assembly.

For the purposes of this discussion, we will focus on the assembly issues and how to best resolve them. Though the geometry of the QFN is, in part, what makes it appealing, it is also the cause of one of its greatest assembly problems: voiding. When you couple a QFN with a lead-free process, the issue of voiding becomes even more problematic. Here is why.

There are arguably many variables that contribute to the increased voiding characteristics of SAC alloy solder joints. Strictly speaking from a materials perspective, though, the problem has to do with the proclivity of SAC materials for volatile formation. SAC alloys form more gases and these volatiles cannot escape as easily from a molten SAC alloy as they can from a conventional SnPb alloy. They have to travel a greater distance to escape and, therefore, become trapped inside the solder joint and form voids.

When this condition is combined with the unique geometry of the QFN, voiding may become even more prevalent. Unlike BGAs where there are bumps or a QFP where there are leads, the QFN provides no standoff so there is nothing to absorb stress or allow for volatile escape. What is more, the pad in the centre of the QFN, which is primarily used for thermal transfer, presents large area soldering challenges and, consequently, issues with voiding. Because there is such a large surface area and no standoff to allow volatiles to escape, these gases may become entrapped and cause void formation.

Though many would argue that some level of voiding is acceptable, Henkel's stance has always been that reducing voids as much as possible is the best approach. Plus, with QFNs, the voids are not just problematic from a mechanical perspective, but can also result in thermal transfer impedance issues as well. This can lead to resistive heating and, if the voids are sizeable, hot spots can develop and may lead to thermal damage of the device.

Resolving the QFN voiding challenge may not be as difficult as it seems, however. Through a two-pronged materials-based and process-based approach, the materials experts at Henkel have successfully reduced the incidence of voiding in QFNs in both laboratory and high-volume production environments. Henkel's work has revealed that modifications to the solder paste flux system can significantly reduce void formation.

The flux's solvent concentration and boiling temperature, flux content and flux activator concentration all play a role in volatile formation. By altering the flux system to reduce volatile generation, voiding is lessened significantly. Using this technique, Henkel has developed some innovative, low-voiding solder pastes aimed at enabling the QFN to be the powerhouse package it was intended to be.

A low-voiding solder paste in combination with optimised reflow profiles is clearly the best method for ensuring void reduction. I would be remiss if I did not also mention the potential impact of varying the print patterns for the QFN's centre pad as another possible void reduction mechanism.

Depending on the size of the device, limited success has been realised through printing a pattern - such as a snowflake or cross - instead of covering the entire pad with paste, which may allow for some area through which gases can escape.

While we have successfully shown that using a low voiding solder paste and an optimised reflow profile are the best proven routes to QFN void reduction, more detailed analysis of QFN voiding behaviour is certainly warranted to fully understand this issue. In fact, Henkel and Technology de Monterrey recently launched a year-long study on QFN assembly and we expect to publish the final results by year's end.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

New handle for the XP Series joystick
Brabek Manufacturing / Production Technology, Hardware & Services
The new MF handle meets market demands to combine a traditional compact design with multiple functionalities and customisation options.

Read more...
Next-level conformal coating
Techmet Manufacturing / Production Technology, Hardware & Services
The ASYMTEK Select Coat SL-1040 Series is Nordson Electronics Solutions’ most advanced conformal coating solution for high-volume production.

Read more...
The impact of ML in robotics
Manufacturing / Production Technology, Hardware & Services
The integration of machine learning into robotics has the potential to revolutionise many industries, and particularly the manufacturing sector.

Read more...
ITW EAE wins product introduction award
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
ITW EAE has earned a 2024 New Product Introduction (NPI) Award for Electrovert’s Deep Wave option for wave soldering machines.

Read more...
Revolutionising clean air in electronics manufacturing
Allan McKinnon & Associates Manufacturing / Production Technology, Hardware & Services
Designed to prioritise clean air in the electronics manufacturing industry, the ZeroSmog Shield Pro sets a new standard for workplace health and safety.

Read more...
High-speed multi-function dispensing
Techmet Manufacturing / Production Technology, Hardware & Services
The D-VIS and DL-VIS from GKG SMT printer specialists are high-speed dispensing systems that can handle multiple scenarios.

Read more...
Optical inspection for SMT
Techmet Manufacturing / Production Technology, Hardware & Services
The Xpection 1860 from Scienscope is a versatile X-ray inspection machine that offers comprehensive circuit board defect detection and quality assurance for the SMT industry.

Read more...
Yamaha introduces upgrades to its 3D AOI systems
Truth Electronic Manufacturing Manufacturing / Production Technology, Hardware & Services
Yamaha Robotics SMT section has revealed performance-boosting upgrades for the YRi-V 3D AOI system, including faster board handling, multi-component alignment checking, and enhanced LED coplanarity measurement.

Read more...
Flexible printed electronics substrates
Manufacturing / Production Technology, Hardware & Services
New LEXAN CXT film from SABIC offers high thermal process stability and transparency for demanding printed electronics substrates.

Read more...
Lead-free solder paste
Techmet Manufacturing / Production Technology, Hardware & Services
Indium8.9HF is an air reflow, no-clean solder paste specifically formulated to accommodate the higher processing temperatures required by SnAgCu, SnAg, and other alloys.

Read more...