Telecoms, Datacoms, Wireless, IoT


Power-line modem delivers up to 100 Kbps

9 July 2008 Telecoms, Datacoms, Wireless, IoT

Maxim has introduced the MAX2990 OFDM-based, power-line communication (PLC) modem.

This device employs advanced broadband-communication techniques to deliver cost-effective, two-way data communication over AC and DC power lines at speeds up to 100 Kbps. By using existing power lines, it reduces the need for external cables to interconnect between network nodes.

Supporting a wide, 10 kHz to 490 kHz frequency range, the device complies with international power-line signalling regulations, including CENELEC, FCC and ARIB. This highly integrated SoC is suitable for applications requiring high data rates over long distances, such as automatic meter reading (AMR), energy management and load control, lighting control, and building, industrial and home automation.

The challenge of communicating through existing power lines

The power-line network is by far the largest network in the world. While the idea of using power lines for communication goes back to the 1920s, the number of communication devices installed on dedicated wires far exceeds the number installed on AC power lines today.

Power lines are hostile environments. The lower, 10 kHz to 500 kHz frequency region is especially susceptible to interference, background noise, impulsive noise, and group delays. Figure 1 shows the average noise in a typical power-line channel.

Figure 1. Average noise in a typical power-line channel
Figure 1. Average noise in a typical power-line channel

To overcome these challenges, many companies have tried different modulation techniques such as spread spectrum and other narrowband schemes. None of these solutions achieve high data rates reliably over the long distances required by today’s demanding applications.

OFDM and advanced networking technologies ensure robust data communication

Maxim has solved the problems inherent to PLC by applying broadband communication techniques. The MAX2990 uses OFDM technology with DBPSK modulation and forward error correction (FEC) to provide robust data communication in the presence of narrowband interferers, group delays, jammer signals, impulsive noise and frequency-selective attenuations.

Advanced networking techniques ensure a reliable, highly secure communications network. Specifically, a CSMA/CA scheme controls the data traffic flow in multiple-node distributed networks, and an automatic repeat request (ARQ) function ensures the delivery and receipt of incoming packets. The MAX2990 also integrates a fast DES encryption/decryption coprocessor to enhance data security.

Improved bandwidth utilisation maximises data recovery

Figure 2 compares a narrowband technology, such as FSK, to a broadband technology, such as OFDM. These two technologies differ in the number of tones that each uses to transmit data per symbol (a symbol is the smallest unit of data transmitted at one time). The graph illustrates that OFDM uses bandwidth more efficiently than a narrowband method, thereby allowing more tones to be transmitted for a given bandwidth.

Figure 2. Comparison between narrowband and OFDM transmission
Figure 2. Comparison between narrowband and OFDM transmission

The higher number of tones available from OFDM systems enables the MAX2990 to implement data-recovery schemes such as Reed Solomon and convolutional encoding. These advanced channel-coding techniques provide error-correction bits that can be transmitted with the data on different tones to maximise data recovery.

Superior performance at higher data rates

When evaluating a modem, one of the most significant values to consider is the bit-error rate (BER) at a given signal-to-noise ratio (SNR). The BER is the ratio of the lost bits to the transmitted bits at a certain noise level.

Whereas a typical FSK system has a BER of approximately 10-4 at 12 dB SNR with a data rate of 2 Kbps, the MAX2990 achieves the same BER at 4 dB SNR with data rates of 32 Kbps in Cenelec bands between 10 kHz and 95 kHz. Thus, using OFDM technology with error-correction techniques enables an 8 dB improvement in performance at much higher data rates.

To further improve performance, the MAX2990 automatically switches to robust mode when input-signal variations exceed predefined thresholds, such as SNR levels, input-fluctuation levels, and potential in-band tone reductions. As a result, this mode achieves 5 dB improvement in SNR, but at lower data rates.

The MAX2990 combines the physical (PHY) and media access control (MAC) layers in a single chip that also integrates Maxim’s 16-bit RISC MAXQ microcontroller. The MAX2990 includes 32 KB of Flash memory to run the MAC code and user-defined custom applications, plus 8 KB of SRAM for data memory. Additionally, it supports UART, SPI and I²C serial interfaces for glueless communication between the power line and other devices on the network.

For more information contact CST Electronics, +27 (0)11 608 0070, [email protected], www.cstelectronics.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...
RFID in aviation: the ultimate solution to baggage mishandling
Osiris Technical Systems Editor's Choice Telecoms, Datacoms, Wireless, IoT
Creating a solution that enables real-time tracking of airline baggage on a global scale seems like an impossible task when considering the number of airlines, airports, and passengers that flow through and between them.

Read more...