Telecoms, Datacoms, Wireless, IoT


UHF RFID explained

14 May 2008 Telecoms, Datacoms, Wireless, IoT

Anyone can buy an RFID system nowadays. In the past you would have had to be a specialist that either understood radio or computer issues, but nowadays you click on the order button, submit your payment details and the system arrives in the post.

That does not, however, mean that you are going to understand its operation or make it part of a successful application.

Anyone buying computer equipment in a computer store, will realise that the end user is being treated as a fool and that the specifications he is given about the equipment he is buying seldom go beyond the mains voltage needed to operate. All those specifications that are deemed necessary to inform him of the product, need to fit on the side of a small box and sometimes in nine languages. This is a far cry from buying computer equipment in the past when the pricelist along with the options, ran into 76 pages.

However, the equipment is not getting simpler, the users are just being told less.

UHF RFID is a technology that also has many options that affect its performance, and it is important that end users understand these choices so that they can get the right equipment for their application.

One of the most used choices, with all the hype about very low-cost transponders, is price. Not understanding the issues, users buy the cheapest transponders with the worst performance and end up with applications that will not work.

RFID performance is dominated by the choice of the operating frequency, and RFID operating in the UHF frequency band offers the best of most worlds with long range performance and potentially the lowest manufacturing costs.

There are two major classes of UHF RFID, namely those where the tag-talks-first (TTF) and the other where the reader-talks-first (RTF).

If you have an application for measuring slow-moving items passing a control, where you want very short operating range and you are labelling items that need to be sold in a retail store, then you want RTF such as EPC Gen2 type tags. These tags are relatively cheap, but the protocol causes the reader to generate a lot of radio interference for other users in the vicinity and so very few readers can operate in close proximity.

Usually these readers will be switched off most of the time and will only be activated when a pallet is passing so that other readers can use the spectrum. You cannot use these types of transponders for high speed situations, or for sports timing situations, or for theft control, as the time when the reader will successfully communicate with a transponder is uncertain as a result of the RTF protocol.

The other protocol (TTF) allows critical situations to be continually monitored, allowing fast moving tags to be measured, and can provide repeatable, accurate measurements even in situations where multiple readers are in use at the same time.

The reader emits a continuous energy field which provides power to the tags and a frequency reference for them to use for communication. As the energy field is constant, little interference is caused and many readers can operate simultaneously and continuously in close proximity. The tag responds when entering this energy field and receiving enough energy to operate.

This response can come within thousandths of a second of it receiving enough power, which means that it is suitable for sports timing in many situations, can handle transponders attached to speeding items (up to 300 kph), and can be used to monitor access points for anti-theft, asset and monitoring purposes as the energising field is continuously active and goods will not be able to pass through undetected. TTF tags also usually have longer operating ranges, providing a larger coverage field in front of readers.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved