Telecoms, Datacoms, Wireless, IoT


RFID-radar provides precision long range measurement

30 April 2008 Telecoms, Datacoms, Wireless, IoT

In August 2005, Trolley Scan developed a technology which allows an RFID system to not only identity the transponders, but also measure the distance of the transponder from the reader.

What is unique about this technology is that it has the ability to measure the distance travelled by the radio signal very accurately. In fact, as this article will show, accuracy of the system is better than one part in 40 000. The system can also measure the location of multiple transponders simultaneously and uses the same low cost passive and battery assisted transponders used in normal RFID readers.

The system uses the wavelength of the operating frequency of the signal travelling from the transponder to the reader as its 'yardstick'. The wavelength is based on a physical property, namely the speed at which radio waves travel, a value that is very accurately known. In fact the standard definition of the metre unit of length kept by ISO (International Standards Organisation) is defined in terms of wavelengths and the speed of light.

RFID-radar is a form of relatively low-cost RFID reader system and is commercially available. By attaching transponders to items, the RFID-radar is able to read the identity and positions of the transponders, effectively combining RFID and realtime locating systems (RTLS) in one device.

The system uses different types of transponders depending on required operating range.

Low cost passive transponders are used for short ranges (up to 13 metres) and long range battery assisted tags for ranges up to 40 metres.

The system currently has two levels of accuracy, namely 'absolute accuracy' which is currently about 0,5 metres, and 'relative accuracy' where the accuracy is approximately 1 millimetre. This article focuses on relative accuracy. In this mode, the system measures the changes in distance between the reader and the transponder very accurately.

Relative mode

Use of the system in relative mode allows small movements to be measured at long distances. Such uses might be to monitor movement of a bridge with traffic flow or temperature variation, the bulging of storage tanks with variations in storage content, bulging of a dam wall, slippage of a structure on a mountain with rainfall, movement of a structure in wind and similar situations.

A series of transponders would be attached to the structure, and the RFID-radar set up at a monitoring point some distance away. The radar would continually measure the distance from all of the transponders to the radar, reporting all the measurements once per second and giving approximately millimetre accuracy 24 hours per day.

Testing

To investigate the long term accuracy, a test was conducted using 24 500 measurements from seven transponders at different distances. The test collected all the data measured over one hour with each transponder being measured once per second. Different types of transponders were used, from passive credit card-sized types to battery assisted types. Table 1 shows the range of each transponder and its type, and the charts show the scatter for each situation.

Table 1. Different transponder types used for testing
Table 1. Different transponder types used for testing

Conclusion

RFID-radar is an effective solution to a difficult problem, namely measuring small movements at long distances, using affordable solutions. Because the transponders are very cheap, it is commercially practical to mount this equipment in permanent monitoring situations to collect data on a 24 hour basis and generate alarms should variations be out of tolerance.

For more information contact Mike Marsh, Trolley Scan, +27 (0)11 648 2087.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved