News


Novel chip design to enhance sensor speed and efficiency

5 March 2008 News

There are clear opportunities in key applications for sensing devices that provide lower power consumption and increased detection and processing speed. Such capabilities could be facilitated by using more energy-efficient, faster chips (or sensor interface circuits), as well as by achieving enhancements (such as further miniaturisation) in the sensing element itself.

In terms of energy efficiency and speed, the pace of development has been phenomenal in recent decades, which has led to innovative devices and technology. Despite all these developments, there is a constant need to keep up with device requirements and user needs. Apart from this, improved performance can allow developers to gain an upper hand in the market, especially for portable devices and sensor networks.

In this constant quest for faster and more efficient technology, a team of researchers from the Massachusetts Institute of Technology (MIT) has developed a new design for a faster and more energy efficient chip. The design, developed in collaboration with Texas Instruments (TI), promises to be up to 10 times faster than current chip design techniques.

The primary goal of the research team was to develop a design that would enable the chip to function at lower voltages than those designed through conventional techniques. The current crop of chips require around 1 V to operate, whereas the MIT team has developed its chip to operate at 0,3 V.

The team demonstrated the working of the new design by implementing it in a TI MSP430 microcontroller. To achieve the ultralow power design the researchers needed to develop a highly efficient on chip DC-DC converter, which would result in a lower voltage requirement and lower number of distinct components on one chip.

The challenges faced by the researchers during the development of their novel design were very similar to standard chip design developments. The major difficulty was to control the variability in the manufacturing process, since the decreasing operational voltage increases the chance of variations and defects in the chip.

The entire design is a complete system-on-chip implementation along with customised memory and logic circuits leading to improved data flow and speed. The need to redesign the memory and logic stems from the fact that these circuits have been designed over the years to operate at high-voltage levels.

The design, which has not yet been commercialised, has the potential to aid in the development of portable and implantable devices. Apart from consumer devices, such as cellphones and multimedia devices, sensors used in communications and medical applications could greatly benefit from lower power consumption and improved device efficiency.

The longer life of batteries might just be a starting point for this technology, since the lower voltage requirements could also lead to the development of devices that could be powered by alternative power sources such as medical implants, which could use available ambient energy.

The development of the new chip design was partly funded by a US Defence Advanced Research Projects Agency (DARPA) grant.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Electronic News Digest
News
A brief synopsis of current global news relating to the electronic engineering fields with regards to company finances, general company news, and engineering technologies.

Read more...
4000 A containerised DB for power project
News
Power Process Systems has successfully completed the design, fabrication, and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project.

Read more...
Datacentrix Industrial Indaba 2025
News
Datacentrix recently hosted its inaugural Industrial Indaba 2025, where industry leaders explored how digitalisation, resilience, security and compliance are shaping the future of sustainable industrial operations in Africa.

Read more...
RS brings solar light to 150 000 people
RS South Africa News
The company’s three-year partnership with SolarAid aims to raise £1 million through corporate donations, matched funding, product contributions, and fundraising to accelerate access to safe, sustainable energy.

Read more...
Microchip and AVIVA Links collaboration
Altron Arrow News
Microchip and AVIVA Links have achieved groundbreaking ASA-ML interoperability, accelerating the shift to open standards for automotive connectivity.

Read more...
World’s leading supplier of grid automation products
News
Hitachi Energy was recognised as the global market share leader in grid automation for electric power transmission and distribution utilities by ARC Advisory Group.

Read more...
Vivashan Muthan appointed as head of export sales and operations at RS South Africa
RS South Africa News
With a career spanning engineering, business development, and sales leadership across sub-Saharan Africa, Vivashan Muthan brings a wealth of expertise to his new role as head of export sales and operations.

Read more...
Google equips university students across Africa with free access to advanced AI tools
News
A 12-month Google AI Pro plan has been launched for students in Ghana, Kenya, Nigeria, Rwanda, South Africa, and Zimbabwe to build foundational AI skills.

Read more...
Africa’s space economy projected to be worth $22,6 billion in 2026
News
South Africa is gearing up to be at the forefront of the growth in the space industry, creating thousands of jobs, driving innovation, and boosting the national economy.

Read more...
Distribution partnership with MacDermid Alpha
Testerion News
MacDermid Alpha Electronics Solutions India Private Limited has announced that as of 01 September 2025 Testerion will be the sole importer and distributor of their products to the South African market.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved