Interconnection


A comparison of the edge rate vs stamped/cut contact

8 August 2007 Interconnection

The purpose of this document is to compare Samtec’s edge rate contact to a standard stamped/cut style contact both mechanically and electrically.

Some of the attributes that will be compared include durability, normal force, insertion/withdrawal force, contact wear and signal integrity performance.

For this comparison, Samtec's HSEC8 series and MEC8 series connectors were chosen. Both of these connectors are used in edge card applications, see Figures 1 and 2. These two products were chosen because they are virtually the same connector, but with different style contact systems. Both connectors feature two rows of contacts on 0,8 mm pitch, but the HSEC8 series uses the edge rate contact system whereas the MEC8 series uses a stamped/cut contact system.

Figure 1. HSEC8 series and HSEC8 series mated with card
Figure 1. HSEC8 series and HSEC8 series mated with card

Figure 2. MEC8 series and MEC8 series mated with edge card
Figure 2. MEC8 series and MEC8 series mated with edge card

Each of these contact styles has its advantages and disadvantages depending on the application/end use. The major advantage the stamped/cut contact system has over the edge rate contact system is the ability to produce ultra fine pitch connectors. Ultra fine pitch connectors are those connectors under 0,8 mm pitch from contact to contact. Currently, the tightest pitch available on a connector using the edge rate contact system is 0,8 mm, while connectors using the stamped/cut contact system are available on 0,635 mm and 0,5 mm pitch.

Stamped/cut contacts mate on the cut edge of the stamping which can be seen in Figure 3. This edge is considerably rough compared to the flat surface of the edge rate contact shown in Figure 4 where the contacts mate on the mill supplied surface of the contacts.

Figure 3. Cut edge contacts
Figure 3. Cut edge contacts

Figure 4. Edge rate contacts
Figure 4. Edge rate contacts

As a result of the contact fabrication, the edge rate contact will always feature a smoother mating surface. See Figures 5 and 6 for a visual comparison of the contact surfaces as seen under high resolution. This difference in contact surface finish is what contributes to the durability and wear characteristic - differences that are seen between the edge rate and stamped/cut contact systems.

Figure 5. Edge rate – Samtec’s HSEC8
Figure 5. Edge rate – Samtec’s HSEC8

Figure 6. Stamped/cut – Samtec’s MEC8
Figure 6. Stamped/cut – Samtec’s MEC8

Because the stamped/cut contact is considerably thicker than it is wide, its spring rate is generally higher as compared to an edge rate contact of similar size, see Figures 7 and 8. The spring rate is the amount of normal force required to deflect the contact beam a defined unit of distance. In comparison, edge rate contacts are wider than they are thick, and thus have a lower spring rate, see Table 1. Spring rate, along with a few other variables, affects the insertion/withdrawal characteristics that a connector system exhibits. This is sometimes referred to as mating/unmating forces.

Figure 7 (mm). Edge rate contact
Figure 7 (mm). Edge rate contact

Figure 8 (in). Stamped/cut contact
Figure 8 (in). Stamped/cut contact

Table 1. Normal force/spring rate
Table 1. Normal force/spring rate

In general, the lower the spring rate, the lower the insertion/withdrawal forces. When comparing the insertion/withdrawal numbers for both contact systems, the trend is that the higher the spring rate, the greater the insertion/withdrawal force displayed, see Table 2 for examples.

Table 2. Insertion/withdrawal force
Table 2. Insertion/withdrawal force

The rough surface on the stamped/cut style contact will create 'wear tracks' on the contact beams. The rate at which these wear tracks are created define the durability of the connector which is more commonly referred to as cycle life. The smooth mating surface of the edge fate style contact has a slower rate of wear track growth. This allows the edge rate contact system to be rated at a much higher cycle life.

When comparing the differences between these two contacts from a high speed electrical standpoint, some general conclusions can be made. Due to the contact design/construction method, the stamped/cut style contact exhibits more coupling which in turn means more crosstalk. There are also more geometry changes in the stamped/cut style contact which can negatively affect the impedance and the return loss. For the most well behaved impedance profile, the contact that exhibits the straightest, most consistent material cross section usually performs the best.

In summary, the edge rate contact was compared to the stamped/cut style contact with regards to durability, normal force, insertion/withdrawal force, contact wear and signal integrity performance. Both contact styles have applications that they are best suited for, and even though the cost of these contact styles was not covered, this can also be a factor when determining the best overall solution for your application.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Connectors for the Smart Factory
Spectrum Concepts Interconnection
[Sponsored] Designing networks for the smart factory can seem daunting, but the solutions are already available with Samtec providing a comprehensive range of interconnect technologies tailored to the demands of the modern factory.

Read more...
Mouser shares expert design solutions for advanced robotics development
Interconnection
Mouser Electronics has announced a new interactive eBook, ‘The Electric Workforce’, in collaboration with electronics manufacturer and connectivity innovator, Molex.

Read more...
Explosive zone connectors
Interconnection
The connector series design by Glenair is optimised for fast and easy crimp-contact wire termination, with ample wiring space in the cable housing and accessory hardware.

Read more...
Reliable photovoltaic adapter set
Phoenix Contact Interconnection
Phoenix Contact’s PV-AS-MC4/6-150-MN-SET1 is a high-performance photovoltaic adapter set designed to bridge SUNCLIX connectors with MC4 connectors.

Read more...
Liquid cooling connectors improve thermal management
Startech Industrial Interconnection
The leak-free design and high flow rate of both series from Amphenol make the connectors ideal for high-reliability equipment that employ liquid cooling.

Read more...
Multi-config connector series
Future Electronics Interconnection
Hirose Electric’s DF11 Series is a versatile 2,0 mm pitch, double-row board-to-wire connector designed to simplify a wide range of connection needs.

Read more...
Ultra-rugged connector
Hiconnex Interconnection
Radiall has introduced a new connector for ribbon fibre connections called Fortero to provide proven performance in high-vibration, high-impact, and extreme environments.

Read more...
Innovative D-Sub PushPull hood
Hiconnex Interconnection
HARTING has launched its new D-Sub PushPull housings, designed to improve efficient and process-safe handling by transforming a well-known connector family into a simplified solution.

Read more...
High-density multicoax assemblies
RFiber Solutions Interconnection
Withwave’s high speed and high-density multicoax cable assemblies provides a wide range of multiple coax connectors and flexible cable assemblies.

Read more...
RJ45 jacks with integrated magnetics
Phoenix Contact Interconnection
Phoenix Contact now offers RJ45 jacks with integrated magnetics to improve electromagnetic interference (EMI) noise shielding and ensure reliable data connections in industrial environments.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved