Power Electronics / Power Management


Power supplies: the correct voltage at the correct location

22 February 2006 Power Electronics / Power Management

Many developers, whether they are measurement and control technicians or electronic technicians, are confronted with the phenomenon of 'power supplies'. A re-occurring phenomenon is the supply of suitable voltages at the correct location.

Despite careful selection of power supplies to parameters such as voltage, current, performance, static and dynamic stabilisation and also the ripple effect, to name but a few requirements, the power supply does not function as expected.

Figure 1. Regulator and switch regulator in 3 U and 6 U
Figure 1. Regulator and switch regulator in 3 U and 6 U

Instead of the required 5 V only 4,3 V is measured on the user's board - the switching, which has been arranged for 5 V, will more or less work. Hopefully less, then this mistake will be noticed at the test stage and not later when the customers start to use it. But what are the reasons for these phenomena?

Contacts, transfer resistances and other unknown factors

Unwanted voltage loss develops in contacts and cables, but also on connection clamps and connectors. For the experienced developer the easiest to calculate is the cabling. It is well known that the specific resistance of copper is 0,0175 (Ω x mm²)/m at 20°C. Therefore, in the case, for example, of 10 A current through a cable of 1 mm² diameter, 0,175 V is lost. If the voltage loss is too large, there is a sure way to cure this: increase the diameter. A diameter that has doubled in size has half as much voltage loss. This can be calculated very easily. But what happens to the transfer losses on the contacts to the power supply and the user's board? This cannot be calculated as easily.

Table 1 shows examples of voltage losses of various cables and connectors, each time measured at 10 A current load. It becomes clear how quickly the losses can reach the voltage area. Often the user has to live with long cables and few cross sections, as large cross sections complicate the cabling. How can he avoid unwanted voltage losses despite all of this?

Table 1. Voltage drops with different connection 
technologies and cables
Table 1. Voltage drops with different connection technologies and cables

Local/remote sensing

The answer lies with more, or less, efficient power supplies. More efficient is a power supply, which is equipped with so-called remote sensor connections. Here the regulator can 'feel' the output voltages. Through the separately-wired sensor cables, the regulator sees the voltage conditions at the right location. It asks for more output voltage, in order to achieve the exact required load of 5 V and to keep it stable. Existing transfer resistances of the contact and cables are thereby compensated for. Even thermal changes of the transfers are securely balanced. But here two mistakes can be made.

It can happen, that despite correct cabling with sensor cabling to the load point, the whole system collapses at a certain load, ie, totally fails or even starts a new cycle. What has gone wrong?

One possibility: the voltages losses are compensated, however, the voltage loss from a certain current is too much. After multiplying one of the bad values in Table 1 (0,4-38 V per cable) and the current load at max 10 A, this possibly creates an unwanted strain on the power supply. In this example the power supply would have to make available 2 x 0,38 V x 10 A + 7,6 W. If a 50 W power supply is operating at total capacity, this could mean that the 7,6 W could shut the complete system down.

The static behaviour has been explained. But what problems can occur when the dynamic load changes?

This technology of remote sensing in respect of the sensor cables has one disadvantage. It influenced the reaction time of regulator within the power supply. As every electronics expert has learned in basic studies, cables represent an inductance. This relates to the power cable, as this can create unwanted dynamic effects through changes in the current load, with which the regulator has to battle. It becomes clear very quickly, how well, ie, with how many phases and dynamic reserves, the regulator has been equipped. With the sensor cable operation (red graph: Figure 2) it can be seen that the regulating cycle is still stable, however, the reaction time, the voltage jumpers and breakers are considerably larger than in the yellow graph shown in Figure 2.

Figure 2. Load changing behaviour of a power supply; 2 m load cable with sensor cable (red graph), 2 m load cable with sensor cables connected to the network port (yellow graph)
Figure 2. Load changing behaviour of a power supply; 2 m load cable with sensor cable (red graph), 2 m load cable with sensor cables connected to the network port (yellow graph)

Here the regulator does not have to battle with the cable inductance, therefore the reaction times and voltage deviations are only half as large. A further disadvantage has to be mentioned: the immunity and the interferences of the power supply can be influenced by the sensor cables. This concerns electromagnetic radiation, as well as coupled interferences such as burst. The important measure here is to 'drill in' the sensor cables or shield them. Power supplies from Schroff are therefore equipped with 'drilled in' sensor cables of 1 m length. The protection against interference is achieved with filters and protective measures suited to the power supplies.

When cabling has to be long

However, there are applications where extremely long cables are required but no sensor cables are permitted. Of course, the output voltage still has to be correct.

This can be secured by increasing the load by exactly the amount that is measured for the voltage loss of the power cables. This, however, is a manual matter and has to be repeated when a network component has been exchanged. A certain amount of failure can be expected, especially, when several power supplies within a system have to supply different voltages. In just such cases the power supplies have to be balanced individually and cannot be exchanged with neighbouring units.

Schroff has solved this problem recently in connection with a customer project. The output voltage of the individual standard power supplies (Vq = 5 V) in the customer systems are regulated via programming resistors that are installed on the connectors. These programming resistors (Rx) cause a definite change of the output voltage. In connection with internal resistors a voltage separator is created that can be influenced via Rx, so that the size of Rx determines the resulting output voltage VA of the power supply (Table 2). Thus standard units can be exchanged amongst each other. Also in the case of a service exchange, the corresponding slot will retain the required output voltage.

Table 2. Voltage divider influence
Table 2. Voltage divider influence

The correct voltage in the right location can be achieved. With knowledge and skill, the worst mistakes can be avoided.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Clearing the Static: Effectively control static in your workplace
Actum Electronics Circuit & System Protection
Controlling electrostatic discharge in the workplace is crucial to protect sensitive electronic equipment from damage. Implementing an ESD control program involves various measures and tests.

Read more...
3-terminal filters for automotive applications
RS South Africa Power Electronics / Power Management
TDK has expanded its YFF series of 3-terminal filters for automotive applications to include higher voltages up to 35 V and higher capacitances up to 4,7 µF.

Read more...
Simple battery charger ICs for any chemistry
Altron Arrow Editor's Choice Power Electronics / Power Management
The LTC4162 is a highly integrated, high voltage multi-chemistry synchronous monolithic step-down battery charger and PowerPath manager with onboard telemetry functions and optional maximum power point tracking.

Read more...
Why your PoE budget could make or break your next installation
Power Electronics / Power Management
In South Africa’s often unpredictable networking environments, understanding and planning your PoE budget is essential for system reliability, customer satisfaction, and long-term scalability.

Read more...
Five-minute EV charging a reality
Power Electronics / Power Management
Successfully demonstrated in Beijing recently at the Shanghai auto show, BYD claimed to add 400 km of range in just five minutes of charging.

Read more...
The evolution of power management in electronics
TRX Electronics Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Power and precision in a compact package
Conical Technologies Power Electronics / Power Management
The Mibbo MPS Series metal-encased power supplies deliver solid, efficient power in a durable package that’s built to last.

Read more...
Robust PoE module
CST Electronics Power Electronics / Power Management
The Ag59800-LPB high power, IEEE 802.3bt compliant, PD module from Silvertel offers typical efficiency of 95% making it an ideal choice for higher power, space-constrained applications.

Read more...
Cutting-edge solutions for Africa’s clean energy future
Power Electronics / Power Management
As Africa pushes towards reliable, affordable, and sustainable energy, Sungrow is driving transformation with cutting-edge innovations that enhance grid stability, reduce energy costs, and expand access to clean power.

Read more...
Transformer protection is a critical safeguard for municipal power stability
Power Electronics / Power Management
Transformer protection is not just a technical requirement; it is a vital component in ensuring the resilience and operational integrity of South Africa’s municipal power infrastructure.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved