Computer/Embedded Technology


VMEbus being energised by advances in microprocessors and extended specifications

21 September 2005 Computer/Embedded Technology

The VMEbus format continues to take advantage of the latest developments in microprocessor technology, and those advances, combined with the work on a switched fabric standard for the VMEbus format by the VITA Standards Organisation will ensure the usefulness of the VMEbus format for quite some time.

Today, these advances in microprocessors include higher performance low-voltage processors with manageable power consumption, increased integrated functions per chip set, and network connectivity in the gigabits-per-second range.

The most important developments in the merchant silicon market are being utilised in VME-based single board computers (SBCs), enabling SBCs to handle more demanding applications in avionics, mission control, visualisation, factory automation, and networking.

Embedded processor roadmaps

Technology does not sit still for long in the PC world. New processors and chip sets appear on the market every six months for all the major market segments: servers, workstations and notebooks. This fast-paced technology turnover does not apply in the embedded world where design life cycles typically range from three to five years or longer, not months.

Fortunately, silicon makers such as IBM, Intel and Freescale Semiconductor offer developers specific embedded roadmaps for processors and chipsets, PCI Bridges and Ethernet components that will be available for at least five years. As might be expected, the latest processor roadmap for embedded designers includes processors that offer long-term availability and low voltage requirements providing the embedded developer with numerous benefits, including:

* Higher processing speeds, larger integrated caches, and faster buses - allowing faster program/application execution.

* New hardware enhancements, such as changes within the internal pipeline structure or new hyper-threading technology, which also improves program/application execution.

* Sophisticated on-chip power management functions that allow developers to shut-down and/or wake-up on-chip functions within clock cycles, which reduces power consumption and lessens the need for heat dissipation.

* Dynamic speed control of a processor, which allows developers to reduce or increase the speed of the processor within the clock cycles of a program, making power consumption and heat dissipation easier to manage.

Bandwidth problems solved

Advances in suitable microprocessor technology for single-board computers are not the only bright spots for the VMEbus architecture. After two decades on the market, the VMEbus has become a proven and reliable industry standard with many applications, and both users and manufacturers alike have embraced it. However, as a parallel bus technology, the VMEbus has its limitations, including the inability to perform high-speed synchronous data transfers. Another limitation is that it cannot transfer large data packets.

For applications that communicate via broadband between boards within a system, or between systems chassis, a switched serial bus topology is often the best method of data transfer. Switched, serial bus topologies, such as InfiniBand technology will be used more and more for networking and communications-centric applications.

The natural next step for the VMEbus format is to adopt the advantages of a switched serial fabric approach for addressing the high-speed transfer and large packet transfer requirements of the military and industrial markets. To that end, VITA is working on a new standardisation effort for the use of switched serial fabrics with the VMEbus.

Switched serial fabric technology has several advantages over parallel bus structures. Parallel buses typically use a synchronous single-ended signalling system, signals are difficult to switch quickly, and shared bus arbitration introduces data delay and latency. Parallel buses do not scale well or support multiple traffic types or high availability.

Switched serial fabric technology, on the other hand, generally uses low voltage differential signalling (LVDS) with high speed point-to-point connections, increasing bandwidth into the Gbps range. Signals from each of a system's devices are gathered at a central switch, instead of spread across a parallel bus, and are connected to the desired destination by the switching fabric achieving multiple orders of magnitude bandwidth performance.

The new VMEbus Switched Serial Standard (VXS) or VITA 41 specification, defines the pinout and backplane requirements for an evolutionary path to switched fabric systems for VMEbus installations. Facilitating high-speed and large packet data transfers, the VITA 41 specification will extend the life of systems and facilitate an industry-wide migration path from parallel buses to switched serial fabrics.

To help ease migration of existing VME architectures to switched-fabric technology, the VITA 41 specification addresses backward compatibility with the VME/VME64 specifications. Since existing VMEbus connectors are parallel, new serial connectors have been developed to easily accommodate the new switched standards. For example, the new MultiGig RT P0 connector for VXS boards will support the high-speed switch fabric connectivity while the VXS board's P1 and P2 connectors will support parallel VME traffic.

Another important enhancement to the VMEbus standard is the addition of 2eSST, a new transfer protocol based on source synchronous transfer technology. Designed to enhance the performance of the VMEbus, the 2eSST protocol will double the theoretical bandwidth of the VMEbus to 320 MBps and enable existing applications to increase performance with only minor system software changes. The 2eSST protocol also provides for broadcast data transfer, which will allow the master to send the same data to multiple slaves with a single transmission.

The technology advances of the VITA 41 specification coupled with the addition of 2eSST support should make the VMEbus specification eminently suitable for high bandwidth military and industrial applications for the foreseeable future. When combined with the latest processors, the VMEbus specification should be capable of addressing the needs of the market for many years to come.

For more information contact RedLinX, +27 (0)21 555 3866, [email protected]





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Generate waveforms at 10 GS/s
Vepac Electronics Computer/Embedded Technology
New flagship arbitrary waveform generator cards from Spectrum Instrumentation generate waveforms with 2,5 GHz bandwidth and 16-bit vertical resolution.

Read more...
Quad-port 10GBASE-T controller
Rugged Interconnect Technologies Computer/Embedded Technology
he SN4-DJEMBE, available from Rugged Interconnect, is a networking adaptor card for CompactPCI Serial systems, equipped with four individual controllers for 10GBASE-T.

Read more...
HPE policy management platform
Computer/Embedded Technology
Duxbury Networking has announced the availability of the HPE Aruba ClearPass policy management platform, that enables business and personal devices to connect to an organisational level, in compliance with corporate security policies.

Read more...
IoT gateways
Brandwagon Distribution Computer/Embedded Technology
IoT Gateways are hardware and software devices that are responsible for collecting data from connected devices, managing communication between devices and the cloud, and processing and analysing the data before sending it to the cloud for further analysis.

Read more...
1.6T Ethernet IP solution to drive AI and hyperscale data centre chips
Computer/Embedded Technology
As artificial intelligence (AI) workloads continue to grow exponentially, and hyperscale data centres become the backbone of our digital infrastructure, the need for faster and more efficient communication technologies becomes imperative. 1.6T Ethernet will rapidly be replacing 400G and 800G Ethernet as the backbone of hyperscale data centres.

Read more...
Keeping it cool within the edge data centre
Computer/Embedded Technology
The creation of more data brings with it the corresponding need for more compute power and more data centres, which, in turn, can create unique challenges with regards to securing the environment and cooling the IT loads.

Read more...
NEX XON becomes Fortinet partner
NEC XON Computer/Embedded Technology
This designation demonstrates NEC XON’s ability to expertly deploy, operate, and maintain its own end-to-end security solutions, helping organisations to achieve digital acceleration.

Read more...
Online tool for data centre planning and design
Computer/Embedded Technology
Vertiv has unveiled a new tool, Vertiv Modular Designer Lite, designed to transform and simplify the configuration of prefabricated modular (PFM) data centres.

Read more...
Mission computer for HADES
Rugged Interconnect Technologies Computer/Embedded Technology
North Atlantic Industries’ latest product, the SIU34S, has been selected as the mission computer for the High Accuracy Detection and Exploitation System (HADES) program.

Read more...
14th Gen power to boost AI at the edge
Rugged Interconnect Technologies Computer/Embedded Technology
ADLINK’s inclusion of Intel’s 14th generation Core processors into its latest embedded boards and fanless computers is set to boost the AI and graphics capabilities.

Read more...