Telecoms, Datacoms, Wireless, IoT


RFID systems and radio interference

6 April 2005 Telecoms, Datacoms, Wireless, IoT

RFID systems have to operate in the spectrum allocated for this application by each country. This allocation takes into account other demands on usage of the spectrum for that country. Balancing these demands means that in many countries, the maximum that the RFID industry can hope for is just 200 kHz in the 860-960 MHz band. Some countries have found 500 kHz and some hope for 2 MHz. In the US, this allocation can be as wide as 26 MHz.

The purpose of the RFID technology for global trade, is to have a system that operates in all countries and therefore the minimum allocations need to be used as the guidelines for getting an operating system working.

Recently, a partner of Trolley Scan's exhibited the scanner at a tradeshow in France. Trolley Scan makes tag-talks-first (TTF) equipment that uses just 10 kHz of bandwidth for operation and can allow multiple readers to operate at spacings as close as 4 m. Trolley Scan is one of many manufacturers that produce TTF-based equipment. The equipment currently embodied in the EPC specifications uses a reader-talks-first protocol (RTF) which results in the reader calling out continuously for any tags in the vicinity to respond - using the full power of the reader. This uses up 200 kHz of bandwidth - whether or not a transponder is present, and interferes with other readers within a 1 km radius.

At the show, Trolley Scan found that the reader produced by one North American supplier was generating such interference in the allocated spectrum, that other RFID reader manufacturers could not operate at the same time. The reader on show by that manufacturer met the requirements for the use of the RFID spectrum and was typical of those specified by EPC in Class 0 and Class 1. Eventually an agreement was reached whereby the offending supplier would switch off for half an hour each hour, to allow the other exhibitors to demonstrate their equipment.

The generation of this interference zone is acknowledged by the EPC in that its current specification for Generation 2 readers provides three levels of certification:

* Level 1 readers will be certified to work only when there are no other readers within a 1 km radius.

* Level 2 will be for readers capable of being deployed with several readers within a 1 km radius.

* Level 3 will be certified to work alongside 50 or more readers within a 1 km radius.

In a retail environment, one would expect many more than 50 readers to be present in a 1 km radius. Switching to a TTF type protocol, more than 6200 readers can be made to operate within the 1 km radius.

The requirements of countries with only a limited spectrum available for RFID, and the desire of the EPC to have a system that is accepted internationally, especially through ISO recognition, will force the development of a Gen 3 version shortly, which will need to be based on TTF principles in order to cater for high reader density.

For more information contact Mike Marsh, Trolley Scan, +27 (0)11 648 2087.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power amps for portable radio comms systems
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
CML Micro expands its SµRF product portfolio with a pair of high efficiency single- and two-stage power amplifiers that offer outstanding performance for a wide range of dual-cell lithium battery-powered wireless devices.

Read more...
RF agile transceiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The AD9361 is a high performance, highly integrated RF Agile Transceiver designed for use in 3G and 4G base station applications.

Read more...
Choosing a GNSS receiver
RF Design Telecoms, Datacoms, Wireless, IoT
Applications requiring sub-ten-meter positioning accuracy today can choose between single-band or dual-band technology. While this decision might seem as simple as flipping a coin, it is far from that.

Read more...
Tri-Teq’s latest range of filters
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Tri-Teq recently presented its latest filter products, which included passive and co-site mitigation filters (lumped element and suspended substrate technologies) and tunable filters (bandpass and harmonic switched filters).

Read more...
Why GNSS positioning precision is enabling the next wave of IoT applications
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
While high-performance GNSS implementations are achievable with few limitations, most real-world applications must balance power consumption, form factor and accuracy requirements.

Read more...
The evolution of 4D imaging radar
Altron Arrow Telecoms, Datacoms, Wireless, IoT
4D imaging radar is redefining automotive sensing with unmatched precision, scalability and resilience and, as global adoption accelerates, this technology is poised to become a cornerstone of autonomous mobility.

Read more...
Links Field Networks: The perfect fit for telematics in Africa
Links Field Networks Telecoms, Datacoms, Wireless, IoT
Operating at the intersection of global SIM innovation and local market intelligence, Links Field Networks has emerged as a premier provider of telematics-oriented connectivity across Africa and beyond.

Read more...
RF direct conversion receiver
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The CMX994 series from CML Micro is a family of direct conversion receiver ICs with the ability to dynamically select power against performance modes.

Read more...
Bridging the future with RAKWireless WisNode devices
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
The WisNode Bridge series by RAKWireless is designed to convert traditional wired industrial protocols like RS485 and Modbus into LoRa-compatible signals.

Read more...
Mission-critical RF transceiver
Vepac Electronics Telecoms, Datacoms, Wireless, IoT
The Iris SQN9506 from Sequans Communications is a wide-band RF transceiver that operates from 220 MHz to 7,125 GHz.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved