Telecoms, Datacoms, Wireless, IoT


RFID systems and radio interference

6 April 2005 Telecoms, Datacoms, Wireless, IoT

RFID systems have to operate in the spectrum allocated for this application by each country. This allocation takes into account other demands on usage of the spectrum for that country. Balancing these demands means that in many countries, the maximum that the RFID industry can hope for is just 200 kHz in the 860-960 MHz band. Some countries have found 500 kHz and some hope for 2 MHz. In the US, this allocation can be as wide as 26 MHz.

The purpose of the RFID technology for global trade, is to have a system that operates in all countries and therefore the minimum allocations need to be used as the guidelines for getting an operating system working.

Recently, a partner of Trolley Scan's exhibited the scanner at a tradeshow in France. Trolley Scan makes tag-talks-first (TTF) equipment that uses just 10 kHz of bandwidth for operation and can allow multiple readers to operate at spacings as close as 4 m. Trolley Scan is one of many manufacturers that produce TTF-based equipment. The equipment currently embodied in the EPC specifications uses a reader-talks-first protocol (RTF) which results in the reader calling out continuously for any tags in the vicinity to respond - using the full power of the reader. This uses up 200 kHz of bandwidth - whether or not a transponder is present, and interferes with other readers within a 1 km radius.

At the show, Trolley Scan found that the reader produced by one North American supplier was generating such interference in the allocated spectrum, that other RFID reader manufacturers could not operate at the same time. The reader on show by that manufacturer met the requirements for the use of the RFID spectrum and was typical of those specified by EPC in Class 0 and Class 1. Eventually an agreement was reached whereby the offending supplier would switch off for half an hour each hour, to allow the other exhibitors to demonstrate their equipment.

The generation of this interference zone is acknowledged by the EPC in that its current specification for Generation 2 readers provides three levels of certification:

* Level 1 readers will be certified to work only when there are no other readers within a 1 km radius.

* Level 2 will be for readers capable of being deployed with several readers within a 1 km radius.

* Level 3 will be certified to work alongside 50 or more readers within a 1 km radius.

In a retail environment, one would expect many more than 50 readers to be present in a 1 km radius. Switching to a TTF type protocol, more than 6200 readers can be made to operate within the 1 km radius.

The requirements of countries with only a limited spectrum available for RFID, and the desire of the EPC to have a system that is accepted internationally, especially through ISO recognition, will force the development of a Gen 3 version shortly, which will need to be based on TTF principles in order to cater for high reader density.

For more information contact Mike Marsh, Trolley Scan, +27 (0)11 648 2087.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

5G transparent antenna
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions recently announced the launch of its 5G transparent antenna, the YFCX001WWAH, an innovative solution designed to improve connectivity while maintaining seamless device design.

Read more...
GNSS chipset for wearables
RF Design Telecoms, Datacoms, Wireless, IoT
The UBX-M10150-CC from u-blox is a GNSS chip that supports GPS, QZSS/SBAS, Galileo, and BeiDou constellations, and is designed for integration into wearable applications.

Read more...
X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
LTE Cat 1 bis communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG810M series is a series of LTE Cat 1 bis wireless communication modules specially designed by Quectel for M2M and IoT applications.

Read more...
Quad-channel 16-bit converter
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The ARF0468 from Advance RF is a quad-channel mixed-signal processing chip, with each channel comprising three major functional modules: ADC/DDC/DDS.

Read more...
Tactical navigation system
Etion Create Telecoms, Datacoms, Wireless, IoT
Etion Create’s CheetahNAV Compact is a versatile tactical navigation system designed for security services, emergency services, and light all-terrain vehicles (ATVs) using offline navigation maps.

Read more...
Smart module for multi-media devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Powered by a Qualcomm processor, Quectel’s new SC200V is designed to deliver exceptional performance across system capabilities, multimedia functions, and network connectivity.

Read more...
Remote provisioning firmware added to SIMCom modules
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently announced that its range of Cat 1 bis IoT modules are now being prepared with the firmware necessary to support SGP.32 functionality.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...