Telecoms, Datacoms, Wireless, IoT


National Semiconductor: Power-over-Ethernet (PoE)

6 April 2005 Telecoms, Datacoms, Wireless, IoT

The Internet is becoming as essential and ubiquitous a tool for communication and entertainment as are television and the telephone. An ever-growing variety of powered devices (PDs) such as wireless routers, Web cameras, VoIP phones, and others are finding more and more applications in facilitating and extending the usefulness of the Internet.

All of these devices require a power source to run them and, although the obvious source of this power is the mains, this choice is unattractive because of the additional cables that need to be introduced. A far better solution is to use the Ethernet cable that transfers data to also carry power from the Ethernet hub to the PD, thus eliminating extra cables.

However, there are limits to the power that the Ethernet hub can provide and to the current that the Ethernet cables can handle. To ensure that neither is overloaded and to standardise and streamline the interfacing of PDs to the Ethernet power sourcing equipment (PSE), the IEEE has written the 802.3af Power-over-Ethernet specification to govern the electrical behaviour of Ethernet power loads.

IEEE 802.3af specification

The 802.3af specification allows for power at 44 V to 57 V at the PSE to be delivered to the PD over a CAT-5 or CAT-6 cable by using either spare conductors in the cable or by sharing the data conductors. In the latter case, transformers can be used on both ends of the Ethernet cable to combine and separate the power and data signals.

Design considerations for PoE supplies

Clearly, every PoE power supply must have an 802.3af-compliant powered device interface (PDI) or front end. In the earliest days of PoE power supplies, their compliance to the specification was affected by discrete circuitry added at the front end. The obvious shortcoming of this approach is that of complexity and component count coupled with greater demands on the design skills of the power supply designer.

A refinement of this approach which some IC vendors have followed, is to build just the PDI to ensure compliance with the specification and follow this with a power supply designed around a separate PWM controller. This is an improvement to the previous approach, but still requires the use of two complex ICs for a complete solution.

The PoE PD interface single-chip solution, LM5070

* Combines a fully compliant IEEE 802.3af PD interface with a high-performance current-mode controller.

* Integrates all PD system management including power up/down sequencing and fault protection.

* Provides user programmability of signature impedance, UVLO thresholds, in-rush current, classification current, and DC-DC converter operating parameters.

* Protection for in-rush/fault current limiting, cycle-by-cycle limiting with auto retry, and thermal shutdown.

* Voltage reference and error amplifier for non-isolated applications.

* Available in TSSOP-16 and tiny (5 x 5 mm), thermally-enhanced LLP-16 packages.

For more information, contact Simon Churches, Arrow Altech Distribution, +27 (0)11 923 9600, [email protected]



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Ryzen-based computer on module
Altron Arrow AI & ML
SolidRun announced the launch of its new Ryzen V3000 CX7 Com module, configurable with the eight-core/16-thread Ryzen Embedded V3C48 processor.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
Robust and customisable SBC
Altron Arrow DSP, Micros & Memory
Pairing the powerful i.MX8M Plus System on Module (SoM) from SolidRun, which features the i.MX 8M Plus SoC from NXP, this high-performance SBC is set to transform industrial environments.

Read more...
New family supports future cryptography
Altron Arrow DSP, Micros & Memory
NXP has introduced its new i.MX 94 family, which contains an i.MX MPU with an integrated time-sensitive networking (TSN) switch, enabling configurable, secure communications with rich protocol support in industrial and automotive environments.

Read more...
NXP’s all-purpose microcontroller series
Altron Arrow DSP, Micros & Memory
NXP has released its MCX A14x and A15x series of all-purpose microcontrollers which are part of the larger MCX portfolio that shares a common Arm Cortex-M33 core platform.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...