Telecoms, Datacoms, Wireless, IoT


Troubles with EPC RF protocols

11 August 2004 Telecoms, Datacoms, Wireless, IoT

The world at present is desperate for some form of standard with many companies who wish to become RFID producers wanting to be EPC-compliant.

The EPC goals are based around two components, a data standard used in labelling products and a common RFID protocol standard allowing interoperability between all manufacturers.

The data standard has a core around the very successful numbering system used by the EAN/UCC in about 180 countries worldwide. This currently is implemented on the bar codes used in labelling retail products where the number has three components - one for the country of manufacture, one for the producer in that country and one for the product in the producer's catalogue. These components are combined to form a 13-digit number that uniquely identifies each range of products sold in a retail store.

The RFID protocols cover the technical/physical features of the transponder/reader. EPC had tried to steer clear of all existing patents so that they could have a licence-free situation. The first versions that were implemented were called Class 0 and Class 1, catering for different stages of technical development in the transponder chip process. Recently, the manufacturers who had decided to produce solutions decided to abandon Class 0 and Class 1, and chose to develop a new version called Class 2. From five initial proposals, two went through to the next round and recently, these have been combined into a new single Class 2 proposal.

Introducing a new Class means huge investments in chip design and delays of at least six months while new chips are designed and debugged. It also kills any further developments in Class 0 and Class 1 which are now instantaneously obsolete.

A new complication has now arisen in that a US company is claiming the Class 2 versions will infringe patents it holds on RF Protocols and it is warning everybody that they will have to licence the protocol, hence nullifying all EPC's efforts to bypass patented technology. In fact, Class 2 should never exist, as it is still a reader-talks-first protocol that will prove to be unsuitable for an application where many readers are required to operate in close proximity.

To explain the difference between reader-talks-first and tag-talks-first protocols - imagine you were at a picnic in a quiet park trying to whisper to your companion, but close by, you have another group of picnickers with a radio playing rock music full blast; this is the situation with reader talks first. Now imagine that back in the radio station the music source is disconnected or comes to an end of the music track - the radio is still receiving a signal but is quiet - that is tag-talks-first. In both situations the radio is still broadcasting a signal, the difference being the amount of interference it causes.

By the time EPC accepts the final protocol - possibly a Class 6 ? - it will have to be a tag-talks-first protocol purely on the need to coexist with other readers. However, whether EPC manages to avoid all the patented protocols - which could take about five years to move through the patenting offices - remains to be seen.

It is going to be a long road ahead before there is a practical EPC RF protocol.

For more information contact Mike Marsh, Trolley Scan, 011 648 2087.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved