Analogue, Mixed Signal, LSI


The TigerSHARC processor - an architectural overview

19 November 2003 Analogue, Mixed Signal, LSI

The TigerSHARC Processor family offers wireless infrastructure and general purpose multiprocessing system manufacturers a balanced architecture that uses characteristics of RISC, VLIW, and DSP.

As has been demonstrated in several application spaces, most notably the 3G telecoms infrastructure equipment market, TigerSHARC is the only DSP solution containing the performance and instruction set to enable an 'all software' approach. This means a TigerSHARC-based solution is better equipped to address manufacturer's requirements for flexibility, high-performance, reduced bill of materials cost and added capacity than traditional hardware approaches that rely heavily on ASICs (application-specific integrated circuits), FPGAs (field programmable gate arrays) and/or ASSPs (application specific standard products).

Performance

Through this combination, the TigerSHARC Processor gains the unique ability to process 1, 8, 16 and 32-bit fixed-point as well as floating-point data types on a single chip. This proprietary architecture establishes it in a leading position in the critical areas of performance, integration, flexibility and scalability. Optimising throughput, not just clock speed, drives a balanced DSP architecture and with throughput as the metric, the TigerSHARC Processor is the highest performance DSP for communications infrastructure and multiprocessing applications currently available.

Native support for 8, 16, and 32 bit data types
Native support for 8, 16, and 32 bit data types

Flexibility

While also providing high system performance it also retains the highest possible flexibility in software and hardware development - flexibility without compromise. For general purpose multiprocessing applications, TigerSHARC Processor's balanced architecture optimises system, cost, power and density.

A single TigerSHARC Processor, with its large on-chip memory, zero overhead DMA engine, large I/O throughput, and integrated multiprocessing support, has the necessary integration to be a complete node of a multiprocessing system. This enables a multiprocessor network exclusively made up of TigerSHARCs without any expensive and power consuming external memories or logic.

The latest members of the TigerSHARC family are the ADSP-TS201S, ADSP-TS202S and ADSP-TS203S. The ADSP-TS201S operates at 600 MHz with 24 Mbits and can execute 4,8 billion MACs per second while achieving high floating-point DSP performance. The ADSP-TS202S operates at 500 MHz with 12 Mbits and the ADSP-TS203S operates at 500 MHz with 4 Mbits.

The TigerSHARC Processor's parallelism capabilities allow for up to four 32-bit instructions per cycle while an enhanced communication instruction set reduces some of the mountainous signal processing functions associated with wireless down to a manageable level. The TigerSHARC also provides an unmatched level of both internal and external bandwidth that enable high computation rates and high data rate processing.

The combination of all the above mentioned features positions the TigerSHARC Processor as an excellent candidate for applications requiring extremely high throughput such as the channel decoding algorithms of wireless communications.

For more information contact Analog Data Products, a division of Avnet Kopp, 011 809 6100.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A new era in modular I/O solutions
Rugged Interconnect Technologies Analogue, Mixed Signal, LSI
Aerospace and defence system designers are demanding scalable and high-performance I/O solutions and while traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements.

Read more...
High voltage instrument op-amp
iCorp Technologies Analogue, Mixed Signal, LSI
The SGM621B is a high accuracy, high voltage instrumentation amplifier, which is designed to set any gain from 1 to 10 000 with one external resistor.

Read more...
High-speed SAR ADC simplifies design
Altron Arrow Analogue, Mixed Signal, LSI
The ADI AD4080 simplifies data converter integration by integrating a low drift reference buffer, low dropout regulators and a 16K result data FIFO buffer.

Read more...
2-wire quad voltage output DAC
Altron Arrow Analogue, Mixed Signal, LSI
The DAC has a 2-wire serial interface that operates at clock rates up to 400 kHz, and this interface is SMBus compatible, allowing multiple devices to be placed on the same bus.

Read more...
Dual-channel ADC for RF applications
RFiber Solutions Analogue, Mixed Signal, LSI
The ARF0471 from Advanced RF is a dual-channel, 14-bit, 3 GSPS ADC, which features an on-chip buffer and sample-and-hold circuit.

Read more...
Infineon launches Edge Ai software solution
Altron Arrow Analogue, Mixed Signal, LSI
Infineon has introduced DEEPCRAFT, a new software solution category brand for Edge AI and machine learning, after the company recognised the huge potential of Edge AI for the market.

Read more...
16-bit voltage output denseDAC
Altron Arrow Analogue, Mixed Signal, LSI
The AD5766 uses a versatile four-wire serial interface that operates at clock rates of up to 50 MHz for write mode, and is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards.

Read more...
AFE enables the software-defined factory
Avnet Silica Analogue, Mixed Signal, LSI
With its software configurable analogue inputs, where each input can be configured for voltage, current, resistance, or temperature, NXP’s N-AFE enables a new level of flexibility.

Read more...
Precision voltage reference
Altron Arrow Analogue, Mixed Signal, LSI
The ADR1001 is a fully integrated, ultra-low drift, buried Zener precision voltage reference solution in a single chip.

Read more...
Microphones enable low-power always-on state
Avnet Abacus Analogue, Mixed Signal, LSI
TDK Corporation has announced its InvenSense SmartSound T5848 I2S microphones to enable intelligent keyword, voice command, and sound detection at ultra-low power.

Read more...