Telecoms, Datacoms, Wireless, IoT


Transceiver architectures for low-cost radios - Part II

21 May 2003 Telecoms, Datacoms, Wireless, IoT

After introducing and comparing common wireless systems, Part II of this article will now take a look at 'Wireless system requirements'. The key part of any wireless design is determining the required system performance. In this article the term 'radio' is used to refer to the RF receiver and transmitter circuitry, realising that a total wireless solution also requires a baseband, microcontroller, and software (to be discussed later). Many books and papers have been written on wireless performance parameters but fundamentally the primary parameters that affect size/power/cost are: frequency; range; throughput; and link reliability and interference rejection.

Frequency

Choosing the desired frequency (in MHz) of operation is generally the first thing a system designer does. In the US there are the unlicensed ISM bands at 900, 2400, and 5800 MHz while in the UK the narrowband 868 MHz has proven popular for low-datarate solutions. Presently, the 2,4 GHz band comes closest to a true worldwide solution and therefore has the largest number of component vendors. Other issues the systems designer should evaluate are RF propagation issues (ie range), regional regulatory issues, and possible interference from other users.

Range

Range (in metres) is generally defined as the maximum distance between transceivers which provides a minimum signal-to-noise ratio (SNR). Range has forever been the most important parameter to the systems engineer and the most difficult to specify for the radio manufacturer (due to the wide range of performance in different environments).

Range is theoretically dependent on Tx power, antenna gain (both Tx and Rx), Rx sensitivity, and signal processing gain (if any). Obviously, longer range can be achieved with higher Tx power but at the expense of shorter battery life. Antenna gain is (unfortunately) directly related to size so longer range can be achieved if more space is available. Rx sensitivity depends on both receiver noise figure and IF bandwidth. Besides designing a good low-noise radio front-end, the designer should also seek to use the minimum channel bandwidth necessary to support the required throughput.

Throughput

Designing a radio to support the required throughput (in Kbps) is one of the most important aspects of the system design. Mismatching the radio channel bandwidth to the actual data throughput unnecessarily reduces sensitivity (and therefore range). Since receiver sensitivity is dependent on 10logBW, using a 1 Mbps radio for a 250 Kbps application reduces sensitivity by 10log(4) or 6 dB causing a 50% reduction in range! To get the range back requires increasing Tx power by 6 dB, effectively quadrupling the power consumption. Rarely is this something the system engineer is willing to accept.

Link reliability and interference rejection

Proper receiver operation requires accurately knowing the intended environment. Are there other users on the same or adjacent channels? Any unintended radiators like microwave ovens, etc? Can the system tolerate infrequent packet losses due to interference? Obviously the most robust radio includes enough filtering to reject out-of-band interferers and enough dynamic range to operate with co-channel users. Additionally, datalink protocols intended for wireless links usually have provisions for errors (due to the inherently unreliable wireless channel versus wired). These range from simple CRC checks and ACQ capability to more complex forward error correction. Bottom line is that the systems designer must try and estimate the worst-case RF environment the radio must work within and the tolerable level of interference.

While there are numerous other parameters that can be important to a wireless systems engineer these four items tend to be the most important in a majority of applications.

After determining the basic radio system requirements, the designer must then choose a radio IC. In Part III, we will take a look at transceiver architectures. Many different transceiver architectures have been used in the past along with many different modulation types, but which transceiver IC is best for the application can sometimes be a difficult decision.

For more information contact Components & System Design, 011 979 4274.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

SMT-mountable card connectors
Telecoms, Datacoms, Wireless, IoT
Würth Elektronik introduces four new SMT-mountable Nano SIM and microSD card connectors and expands its range with solutions for the smallest packages.

Read more...
Module for smart city and smart utility devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has launched the Quectel KCM0A5S, a high-performance Wi-SUN module designed for smart applications such as street lighting, precision agriculture, industrial IoT, smart meters and smart cities.

Read more...
Ultra-low-power wireless module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WBA5MMG from STMicroelectronics is an ultra-low-power, small form factor, certified 2,4 GHz wireless module that supports Bluetooth LE, Zigbee 3.0, OpenThread, and IEEE 802.15.4 proprietary protocols.

Read more...
Quectel partners with GEODNET
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions has partnered with GEODNET to deliver Quectel’s Real-Time Kinematic (RTK) correction services, enabling high-precision positioning for IoT applications.

Read more...
Bringing Bluetooth Channel Sounding to automotive and beyond with KW47
Altron Arrow Telecoms, Datacoms, Wireless, IoT
NXP’s new Channel Sounding-certified KW47 and MCX W72 wireless MCUs are set to help automakers with distance measurement, bringing an additional ranging solution for car access and autonomous systems, and will be utilised across a broader spectrum of applications.

Read more...
Dual-band GNSS antenna
RF Design Telecoms, Datacoms, Wireless, IoT
The Taoglas Accura GVLB258.A, is a passive, dual-band GNSS L1/L5, high-performance antenna for high precision GNSS accuracy and fast positioning.

Read more...
What is Wi-Fi HaLow and why choose it for IoT?
iCorp Technologies Editor's Choice Telecoms, Datacoms, Wireless, IoT
Wi-Fi HaLow introduces a low power connectivity option that, in contrast to other Wi-Fi options, offers greater range of approximately 1 km, which opens up a raft of IoT use cases.

Read more...
Wi-Fi 6 and Bluetooth LE coprocessor module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The ST67W611M1 from STMicroelectronics boasts an all-in-one design which, together with its capabilities, contribute to making it an attractive choice for IoT edge devices requiring a single-chip solution.

Read more...
Futureproofing IoT connectivity
SIMcontrol Telecoms, Datacoms, Wireless, IoT
A managed private APN assigns every device to an isolated carrier slice, producing a single ingress to the enterprise network, with traffic bypassing shared internet paths and reducing exposure.

Read more...
Extra slim 2,4 GHz radio module
Telecoms, Datacoms, Wireless, IoT
The Thyone I radio module from Würth Elektronik now has a little sibling: Thyone-e, which takes up 30% less space and represents a cost-effective alternative for applications in which the long-range mode is not required.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved