Analogue, Mixed Signal, LSI


Probability processing circuits

15 September 2010 Analogue, Mixed Signal, LSI

Lyric Semiconductor, a DARPA- and venture-funded MIT spin-out, recently launched a new technology called ‘probability processing,’ which it hopes will deliver a fundamental change in processing performance and power consumption.

With over a decade of development to its name, this probability processing technology calculates in a completely new way, enabling 'orders-of-magnitude improvement in processor efficiency', according to the developers, who claim that Lyric Error Correction (LEC) for Flash memory, the first commercial application of probability processing, offers a 30-times reduction in die size and a 12-times improvement in power consumption, all at higher throughput compared to today’s digital solutions.

Lyric Semiconductor has developed an alternative to digital computing. The company is redesigning processing circuits from the ground up to natively process probabilities – from the gate circuits to the processor architecture to the programming language. As a result, many applications that today require a thousand conventional processors will soon run in just one Lyric processor, providing 1000X efficiencies in cost, power, and size.

For over 60 years, computers have been based on digital computing principles. Data is represented as bits and Boolean logic gates perform operations on these bits. Lyric has invented a new kind of logic gate circuit that uses transistors as dimmer switches instead of as on/off switches. These circuits can accept inputs and calculate outputs that are between 0 and 1, directly representing probabilities or levels of certainty.

A digital processor steps through these operations serially in order to perform a function. In order to improve efficiency even further, Lyric’s processors are designed to perform many probability computations in parallel. Lyric’s approach can accelerate search, fraud detection, spam filtering, financial modelling, genome sequence analysis, and many other important present and future applications that involve simultaneously considering many possible alternatives and deciding on the best fit – the best guess for the answer. In theory, digital processors can perform these calculations, but in practice, they do so very inefficiently. As a result, a huge amount of processing overhead is required, costing an enormous amount of space, power and money.

For more information visit www.lyricsemiconductor.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

A new era in modular I/O solutions
Rugged Interconnect Technologies Analogue, Mixed Signal, LSI
Aerospace and defence system designers are demanding scalable and high-performance I/O solutions and while traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements.

Read more...
High voltage instrument op-amp
iCorp Technologies Analogue, Mixed Signal, LSI
The SGM621B is a high accuracy, high voltage instrumentation amplifier, which is designed to set any gain from 1 to 10 000 with one external resistor.

Read more...
High-speed SAR ADC simplifies design
Altron Arrow Analogue, Mixed Signal, LSI
The ADI AD4080 simplifies data converter integration by integrating a low drift reference buffer, low dropout regulators and a 16K result data FIFO buffer.

Read more...
2-wire quad voltage output DAC
Altron Arrow Analogue, Mixed Signal, LSI
The DAC has a 2-wire serial interface that operates at clock rates up to 400 kHz, and this interface is SMBus compatible, allowing multiple devices to be placed on the same bus.

Read more...
Dual-channel ADC for RF applications
RFiber Solutions Analogue, Mixed Signal, LSI
The ARF0471 from Advanced RF is a dual-channel, 14-bit, 3 GSPS ADC, which features an on-chip buffer and sample-and-hold circuit.

Read more...
Infineon launches Edge Ai software solution
Altron Arrow Analogue, Mixed Signal, LSI
Infineon has introduced DEEPCRAFT, a new software solution category brand for Edge AI and machine learning, after the company recognised the huge potential of Edge AI for the market.

Read more...
16-bit voltage output denseDAC
Altron Arrow Analogue, Mixed Signal, LSI
The AD5766 uses a versatile four-wire serial interface that operates at clock rates of up to 50 MHz for write mode, and is compatible with SPI, QSPI, MICROWIRE, and DSP interface standards.

Read more...
AFE enables the software-defined factory
Avnet Silica Analogue, Mixed Signal, LSI
With its software configurable analogue inputs, where each input can be configured for voltage, current, resistance, or temperature, NXP’s N-AFE enables a new level of flexibility.

Read more...
Precision voltage reference
Altron Arrow Analogue, Mixed Signal, LSI
The ADR1001 is a fully integrated, ultra-low drift, buried Zener precision voltage reference solution in a single chip.

Read more...
Microphones enable low-power always-on state
Avnet Abacus Analogue, Mixed Signal, LSI
TDK Corporation has announced its InvenSense SmartSound T5848 I2S microphones to enable intelligent keyword, voice command, and sound detection at ultra-low power.

Read more...