News


Energy-efficient DSP development

19 August 2009 News

Electronic devices such as mobile phones, portable music players and video players, have become more powerful and more versatile with each passing year.

This trend is expected to continue, as researchers try to pack more capabilities and advanced features into these devices, while simultaneously trying to make them more compact.

However, a major drawback with this approach is that, as more computationally intensive algorithms and advanced signal processing capabilities are embedded onto these devices, the processing chips not only need to operate at higher speeds, but also consume more energy. In other words, the faster a processor works, the more it heats up. Consumers will invariably be less interested in an electronic device that requires frequent battery recharging, however advanced the features it is able to offer.

In an attempt to meet these challenges, researchers from the University of California have developed a highly energy efficient digital signal processing (DSP) chip that also offers very high speeds for common computing tasks. The novel chip reportedly consumes such little energy that it enables a battery powering it to last up to 75 times longer, when compared to contemporary DSP chips. The chip has a maximum clock speed of 1,2 GHz, but when used at slower speeds, offers significantly higher energy efficiency rates. The work is described in a recent paper published in the IEEE Journal of Solid State Circuits.

The processor, tentatively dubbed asynchronous array of simple processors (AsAP), consists of an array of 167 simple programmable processors. The computational platform is capable of per-processor dynamic supply voltage and clock frequency scaling. Besides these, the chip also consists of three algorithm-specific processors and three 16 KB shared memories.

This entire setup is implemented in 65 nm complementary metal oxide semiconductor (CMOS) and all processors and memories are clocked by fully independent, digitally programmable oscillators. At 1,2 V, the processors operate at 1,07 GHz and consume 47,5 mW, which results in an energy dissipation as low as 44 pJ per operation. Likewise, at 0,675 V, they operate at 66 MHz, consuming 608 μW, and consequently dissipating energy as low as 9,2 pJ per operation. This ostensibly means that 93 AsAP chips could achieve 1 Tera-operations (1012) per second while consuming only 9,2 W.

This radical architecture represents one of the highest clock-rate processor chips designed at any university. It is believed that the novel chip could pave the way for the next generation of compact, superfast, and yet, ultra energy efficient electronic devices.

Despite the novel architectural and circuit features, the chip is built with industry-standard fabrication technology and design tools, consequently enabling easy manufacturing using existing equipment. The AsAP is fully reprogrammable and highly configurable, and as a result, can be widely adapted to a range of applications.

Besides applications in portable electronic devices, the AsAP chip is also highly applicable for specialised devices such as anti-lock brakes, ultrasound and medical imaging machines. The compactness of the chip makes it ideal for applications requiring extreme miniaturisation that are consequently very sensitive to energy requirements, such as retinal implants and hearing aids.

The researchers have also written numerous software applications for the chip, including a fully compliant Wi-Fi transmitter and receiver, besides several complex components of the H.264 video encoder.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Technical resource centre for smart cities
News
Mouser’s infrastructure and smart cities content hub features comprehensive articles, blogs, eBooks, and products from Mouser’s technical team and trusted manufacturing partners.

Read more...
UFS Flash named Best in Show
EBV Electrolink News
KIOXIA Europe GmbH was named as winner in the Memory & Storage category of the Embedded Computing Design (ECD) electronica Best in Show Awards at the recently held electronica 2024.

Read more...
Save the date for Securex South Africa 2025
News
Home to Africa’s largest collection of security solutions, Securex South Africa returns to Gallagher Convention Centre in Midrand from 3 to 5 June 2025.

Read more...
Trina Storage ranked in top 10
News
Amidst the global energy storage market, Trina Storage has once again earned recognition from authoritative institutions with its outstanding innovation capabilities and global layout.

Read more...
2025 outlook for DRAM is poor
News
According to TrendForce, weak demand outlook and rising inventory and supply forecast to pressure DRAM prices down for 2025.

Read more...
Price hike to challenge energy reforms
News
Eskom’s proposed 44% price hike could undermine renewable energy gains despite tech innovation.

Read more...
IO Ninja debugging tool
RF Design News
Tibbo has released a major update to IO Ninja, its versatile communications debugging tool for Windows, Linux, and macOS.

Read more...
Young SA robotics team takes world title
News
In a demonstration of innovation and teamwork, Texpand, a South African youth robotics team based in Cape Town, recently made history by winning the 2024 FIRST Tech Challenge (FTC) World Championships.

Read more...
From the editor's desk: A brave new world
Technews Publishing News
The technology Tesla currently uses in its cars from the batteries, power electronics, controllers, through to the mechanics, gearboxes, and the AI inference computer and software have are incorporated in the development of Optimus, allowing the development of the robot to gain impressive features in a relatively short time span.

Read more...
Seven Labs partnership enhances local electronics distribution
Seven Labs Technology News
Aimed at revolutionising the electronics distribution landscape in South Africa, Seven Labs has announced a partnership with LCSC, one of China’s most reputable electronics distributors.

Read more...