News


Cooling chips with microjets

1 October 2008 News

An increasingly important requirement of microelectronics is the development of thermal management systems for cooling chips.

Chips generate excessive amounts of heat that peak in certain parts and potentially threaten their functioning by destroying their internal circuitry. Current cooling technologies are capable of cooling at the rate of 200 W/cm², but technologies have stagnated at this point for several years.

As more high-performance chips are being developed, the heat generated from them will exceed that of conventional microprocessors, calling for better cooling techniques than heatsinks and fans. In light of this, researchers at Purdue University have developed a hybrid cooling technique based on microjets and microfluidic channels that is capable of cooling high-performance chips.

The microjets are used to inject liquid into miniaturised channels and are said to absorb five times more heat than other techniques being developed for chip-cooling in computers and electronics. The technique is capable of cooling at the rate of 1000 W/cm², which allows for greater advances in performance. The method involves the circulation of cooling liquid or hydrofluorocarbon within the chip. As the coolant is an insulator, it does not conduct electricity or cause short circuits.

The cooling system consists of narrow grooves less than a millimetre wide that form channels on top of a chip and are covered using a metal plate with tiny holes. The microjets inject the coolant through these holes and the liquid then flows along grooves to cool the chip. On getting heated by the chip within the channels, the coolant bubbles and momentarily becomes a vapour in order to aid rapid cooling.

The hydrofluorocarbon coolant is used in airconditioning and refrigeration systems owing to their low global warming effects. The difference is that hydrofluorocarbons used in airconditioning are in their vapour form at room temperature, whereas those used in Purdue’s experimental chip-cooling system are in liquid form.

Prior research applied on the concept of coolant flow through microchannels suffered from the drawback that the coolant flowed from one part of the chip to the other, collecting heat and was already heated by the time it reached the end of the channel. This put a limit on the cooling efficiency. Purdue’s microjets technique overcomes this challenge by enabling uniform cooling as the liquid is supplied simultaneously through the jets everywhere along the length of each channel.

This method also prevents the overheating of any specific part of the chip. The coolant on circulation collects at both ends of the channel and is then re-circulated through the system.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)21 680 3274, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What’s new in Altium Designer
EDA Technologies News
Altium has released a major update to its Altium Designer suite version 23.10, with many new features added.

Read more...
SIMCom Symposium 2024
Otto Wireless Solutions News
Otto Wireless Solutions, in conjunction with SIMCom Wireless Solutions, will be hosting a free half-day seminar in Johannesburg – The SIMCom Symposium 2024.

Read more...
From the editor's desk: Exciting times ahead?
Technews Publishing News
There are many subjects that excite me in this world, but two of the larger technical subjects are, firstly, renewable energy, and secondly, the idea of artificial intelligence as it continues to evolve ...

Read more...
Microchip expands partnership with TSMC
News
Microchip Technology has announced it has expanded its partnership with TSMC to enable a specialised 40 nm manufacturing capacity at Japan Advanced Semiconductor Manufacturing.

Read more...
Huge SA grid battery project
News
A standalone battery energy storage system (BESS) has won preferred bidder status under South Africa’s Energy Storage Capacity Independent Power Producer Procurement Programme (ESIPPPP).

Read more...
Mouser sponsors NCP Cup 2024
News
The NXP Cup is an EMEA-based autonomous car competition, presented by NXP Semiconductors, which is designed to provide students with real-world experiences in autonomous vehicle programming and building.

Read more...
TrinaTracker brings its smart solar tracking to SA
News
The Vanguard 1P is designed to provide customers with trackers that combine suitability for flat terrain, together with outstanding system stability and reliability, quick installation, and flexible external compatibility.

Read more...
Nordex adding 830 MW of wind generation
News
Nordex Energy South Africa will be adding 830 MW of wind energy generation capacity to the company’s already-installed 1 GW base.

Read more...
Invertek produces its three millionth drive
iTek Drives News
Invertek Drives Ltd, a global manufacturer of variable frequency drive (VFD) technology, has celebrated producing its three millionth VFD, just three years after its two-million milestone.

Read more...
Analog Devices’ digital storefront is live
News
Analog Devices has designed an improved digital experience with users in mind – a new analog.com website and eShop.

Read more...