Passive Components


Must you have that capacitor?

25 October 2000 Passive Components

When demand for the most common types of capacitors is stretching the world's supply, the use of sensible alternatives can avoid difficulties and may even save money. Murata explains further.

By far the most popular capacitors used are the smaller multilayer ceramic chips (MLCCs). There are many variations available and they are increasingly replacing film and tantalum dielectrics. The majority is used in decoupling and bypass applications, although there is a significant use in temperature compensating and other functions.

Recently, the main changes in MLCCs have been in C/V per unit volume, so that the designer can now select a given C/V in a smaller package, for example, many of the values traditionally ordered in 1206 and 0805 sizes, are now in 0603 or even 0402. Volume users are moving to these sizes, so there will be more of them when delivery schedules get tight.

Difficulties can be minimised at the design stage by using the smaller sizes and more flexible definitions of MLCCs for general applications, with particular reference to the dielectric and voltage ratings (VR) chosen. For example, why specify only one VR? Most circuits today run at something under 10 V. It would be reasonable to specify 10, 16, 25 and 50 V where they are available in the size required?

MLCCs are often specified at unnecessarily high VRs. Unlike many other dielectrics the VR of an MLCC is the maximum voltage at which it can be run continuously within the operating temperature range. There is no need for a safety margin to avoid punching a hole in the dielectric at VR +5%, because the breakdown voltage of an MLCC is well above the operating voltage.

The same principle applies to a lesser degree to tolerance. High K dielectrics do have temperature, voltage and frequency characteristics and the selection of these materials indicates an application that will tolerate them. This being the case, relaxing or tightening the tolerance to allow use of an alternative may well be acceptable.

In decoupling and bypass applications the capacitance value is rarely critical. This suggests that similar but different dielectrics could safely be used. For example in a benign environment, why specify only an X7R dielectric (-55 to 125°C)? Why not consider Y5V and Z5U. They have a higher dissipation factor and change more with temperature, but why in signal lines where temperature is not changing very much and the value is not critical?

In applications calling for stability or temperature compensation, the situation is different but there are still opportunities to be more flexible.

The comments above about voltage rating still apply. For absolute stability COG (±030 ppm/°C) has to be the answer but perhaps COH (±060 ppm/°C) would suffice on some occasions?

With tolerance, in stable circuits there is a tendency to select the tightest available. This may be necessary, but in view of all the other variables, is it always the case?

Table 1 shows some of the dielectric alternatives you might consider at the design stage, or when a specified part is not readily available. Clearly, changing between X7R, X5R, B and R dielectrics will have negligible effect unless operating at the extremes of temperature, and there is little to choose between Y5V and Z5U.

Table 1. Some dielectric alternatives
Table 1. Some dielectric alternatives

These are just examples of what might be done at the design stage or when there is a problem. Your local Murata distributor will be able to assist - some of the alternatives for three popular devices are shown in Table 2. These are not the limits of the size/value ranges, they are just options for these values.

Table 2. Alternatives for three popular devices
Table 2. Alternatives for three popular devices





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
Upgraded power inductor series
iCorp Technologies Passive Components
Sunlord’s multiphase co-fired power inductor HTF-MP series has upgraded the single-phase HTF-H products in terms of integrated applications.

Read more...
Advanced high-voltage capacitors
RS South Africa Passive Components
These new capacitor families from Panasonic are designed for surface-mount and radial lead applications, offering remarkable performance improvements that meet the evolving needs of industrial applications.

Read more...
Chip capacitors for high-voltage applications
RS South Africa Passive Components
TDK Corporation has expanded its line of CeraLink capacitor series B58043 in the EIA 2220 footprint by adding two new 900 V types.

Read more...
Moulded inductors
Future Electronics Passive Components
Abracon’s mini-moulded inductors bring all the advantages of their larger counterparts, including superior EMI shielding, high power density, and low core losses, despite their compact size.

Read more...
New components from KEMET available from TME
Passive Components
Available from KEMET, one of the largest suppliers of passive components, these new components consist of toroidal inductors (ferrites) and capacitors which boast high current performance.

Read more...
Miniature reed relay with 80 W rating
Passive Components
Pickering Electronics has introduced its latest high-power reed relay, Series 44, featuring an 80 W power rating, while stacking on a compact 0,25-inch pitch.

Read more...
The future of on-board charging
Future Electronics Passive Components
Engineered to elevate charging performance, the selection of Vishay capacitors, resistors, and other passives redefine reliability and efficiency in on-board charging technology.

Read more...
Cooling on a chip
Passive Components
This all-silicon, solid-state active cooling chip by xMEMS is designed for thermal management applications for ultra-mobile devices and next-gen AI solutions.

Read more...
First 100 µF MLCC in 0603 packaging
RS South Africa Passive Components
Murata is expanding its range of multilayer ceramic capacitors (MLCC) with the groundbreaking new GRM188C80E107M and GRM188R60E107M.

Read more...