News


New advance towards superconductor wires

5 May 2004 News

Researchers at the Universitat Autònoma de Barcelona, the Materials Science Institute of Barcelona (ICMAB-CSIC), and various German and North American institutions have developed what they claim is a simple method for measuring the maximum current that coated superconductors can carry. The material will, most likely, be used to manufacture the superconductor wires of the future. The research was published in the journal, Applied Physics Letters.

Electric currents pass through superconductor materials without resistance - a property with many technological applications - but this is only possible when the materials are cooled below a certain temperature and when the current does not exceed a certain value.

According to the researchers, the superconductor materials that will most likely be used for wires that transport electric energy are called 'coated conductors'. They are formed by the deposition of a film of high-temperature superconductor material on a metallic band. They say the main advantage with respect to other types of superconductors is that they allow large quantities of electric current to move through them without the need for excessive cooling, yet they keep their superconductor qualities.

The principal limitation of these new generation materials is, however, that their microscopic structure is in the form of small grains, which limits movement through them and makes it more difficult in each case, to know what the maximum current is that the material can carry and yet still retain its characteristics of superconductivity. The team's simple method for measuring the maximum current (called critical current) that coated superconductors can carry is based on measuring the response of the coated superconductor to the application of magnetic fields. The material undergoes a magnetic field with cyclical variations so that different maximum values are obtained, making it possible to measure its critical current. Thus engineers can calculate, in a simple way, the maximum intensity of electric current that a superconductor wire can carry without superconductivity being lost. The difference from other methods is that the technique is non-invasive, ie, it is not necessary to enter into contact with the material.

Furthermore, the results obtained will make it possible to analyse how to improve the granular structure of the superconductor material so as to increase the current that can move through it, thereby obtaining the values required in applications such as superconductor wires for the transmission of electricity, new motors, more efficient and lighter generators, magnetically levitated trains or magnetic resonance image-generating apparatus for the human body.

For more information see www.uab.es/uabdivulga/eng





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: Are we really being ripped off?
Technews Publishing News
To the surprise of many customers, installing solar panels does not always eliminate their utility bill – and in some cases, the power utility may impose additional charges on solar-powered homes.

Read more...
Winner of the Advanced Electronics Challenge
Avnet Silica News
Avnet Silica has named Hydronauten winner of the Advanced Electronics Challenge for breakthrough AI-driven vibration damping technology.

Read more...
Mouser now shipping SiLabs wireless modules
TRX Electronics News
Mouser Electronics is now shipping the new SiWx917Y wireless modules from Silicon Labs which provide ultra-low-power Wi-Fi 6, Bluetooth Low Energy 5.4, and Matter connectivity.

Read more...
Innovative NOS software
News
NEC Corporation has made history as the first company to earn the Telecom Infra Project Phoenix Gold Badge for its innovative Network Operating System software, designed to run on whitebox optical transponders.

Read more...
Big welcome to new team member
Seven Labs Technology News
Seven Labs, a specialist electronics distributor and systems integrator for the South African and sub-Saharan markets, has extended a huge welcome to its newest member of the team.

Read more...
Hisense SA showcases local manufacturing power
News
The proudly SA summit provided an opportunity for Hisense SA to showcase its next generation products manufactured at their state-of-the-art factory in Atlantis, Western Cape.

Read more...
Winner of the Global Energy Efficiency award
News
Pulsiv Limited, the Cambridge (UK) manufacturer of power electronics technology, have won the PSMA’s (Power Sources Manufacturers Association) first Global Energy Efficiency Award.

Read more...
Direct-to-satellite phone call in SA
News
MTN SA and low-earth orbit satellite company Lynk Global have completed a successful technical trial of one of the first mobile-to-satellite phone calls in South Africa.

Read more...
Memory solutions for AI Edge applications
News
Mouser Electronics has announced a new eBook in collaboration with Micron exploring the importance of memory in AI edge applications.

Read more...
Jemstech to produce PCB assemblies for Kamstrup
Jemstech News
Jemstech is pleased to announce that they have successfully concluded a supplier agreement with Kamstrup A/S in Denmark, a leading supplier of intelligent metering solutions in the global market.

Read more...