News


New advance towards superconductor wires

5 May 2004 News

Researchers at the Universitat Autònoma de Barcelona, the Materials Science Institute of Barcelona (ICMAB-CSIC), and various German and North American institutions have developed what they claim is a simple method for measuring the maximum current that coated superconductors can carry. The material will, most likely, be used to manufacture the superconductor wires of the future. The research was published in the journal, Applied Physics Letters.

Electric currents pass through superconductor materials without resistance - a property with many technological applications - but this is only possible when the materials are cooled below a certain temperature and when the current does not exceed a certain value.

According to the researchers, the superconductor materials that will most likely be used for wires that transport electric energy are called 'coated conductors'. They are formed by the deposition of a film of high-temperature superconductor material on a metallic band. They say the main advantage with respect to other types of superconductors is that they allow large quantities of electric current to move through them without the need for excessive cooling, yet they keep their superconductor qualities.

The principal limitation of these new generation materials is, however, that their microscopic structure is in the form of small grains, which limits movement through them and makes it more difficult in each case, to know what the maximum current is that the material can carry and yet still retain its characteristics of superconductivity. The team's simple method for measuring the maximum current (called critical current) that coated superconductors can carry is based on measuring the response of the coated superconductor to the application of magnetic fields. The material undergoes a magnetic field with cyclical variations so that different maximum values are obtained, making it possible to measure its critical current. Thus engineers can calculate, in a simple way, the maximum intensity of electric current that a superconductor wire can carry without superconductivity being lost. The difference from other methods is that the technique is non-invasive, ie, it is not necessary to enter into contact with the material.

Furthermore, the results obtained will make it possible to analyse how to improve the granular structure of the superconductor material so as to increase the current that can move through it, thereby obtaining the values required in applications such as superconductor wires for the transmission of electricity, new motors, more efficient and lighter generators, magnetically levitated trains or magnetic resonance image-generating apparatus for the human body.

For more information see www.uab.es/uabdivulga/eng





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Technical resource centre for smart cities
News
Mouser’s infrastructure and smart cities content hub features comprehensive articles, blogs, eBooks, and products from Mouser’s technical team and trusted manufacturing partners.

Read more...
UFS Flash named Best in Show
EBV Electrolink News
KIOXIA Europe GmbH was named as winner in the Memory & Storage category of the Embedded Computing Design (ECD) electronica Best in Show Awards at the recently held electronica 2024.

Read more...
Save the date for Securex South Africa 2025
News
Home to Africa’s largest collection of security solutions, Securex South Africa returns to Gallagher Convention Centre in Midrand from 3 to 5 June 2025.

Read more...
Trina Storage ranked in top 10
News
Amidst the global energy storage market, Trina Storage has once again earned recognition from authoritative institutions with its outstanding innovation capabilities and global layout.

Read more...
2025 outlook for DRAM is poor
News
According to TrendForce, weak demand outlook and rising inventory and supply forecast to pressure DRAM prices down for 2025.

Read more...
Price hike to challenge energy reforms
News
Eskom’s proposed 44% price hike could undermine renewable energy gains despite tech innovation.

Read more...
IO Ninja debugging tool
RF Design News
Tibbo has released a major update to IO Ninja, its versatile communications debugging tool for Windows, Linux, and macOS.

Read more...
Young SA robotics team takes world title
News
In a demonstration of innovation and teamwork, Texpand, a South African youth robotics team based in Cape Town, recently made history by winning the 2024 FIRST Tech Challenge (FTC) World Championships.

Read more...
From the editor's desk: A brave new world
Technews Publishing News
The technology Tesla currently uses in its cars from the batteries, power electronics, controllers, through to the mechanics, gearboxes, and the AI inference computer and software have are incorporated in the development of Optimus, allowing the development of the robot to gain impressive features in a relatively short time span.

Read more...
Seven Labs partnership enhances local electronics distribution
Seven Labs Technology News
Aimed at revolutionising the electronics distribution landscape in South Africa, Seven Labs has announced a partnership with LCSC, one of China’s most reputable electronics distributors.

Read more...