News


Neurological biosensor chip directly measures electrical activity in living cells

12 March 2003 News

Infineon Technologies and the Max Planck Institute have jointly described how they directly connected a newly developed biosensor chip with living nerve cells to read electrical signals produced by the cells. The ‘Neuro-Chip’ development was described in a paper presented at the recent international solid-state circuits conference (ISSCC).

Neurons are the specialised cells that make up the nervous systems of all living things. Nerve tissues, comprised of many associated nerve cells, are the principal component of the brain and spinal cord. Nerve cells communicate with each other through electrical pulses, so the ability to read these signals and record them in a computer system holds the promise of new insights into neurological processes.

"Concerning the signal-to-noise ratio this chip operates close to elementary physical limits," said Dr Roland Thewes, the senior director responsible for biosensor chip activities within the corporate research centre at Infineon Technologies. "Infineon is able to draw on 50 years of knowledge in chip making to develop biochips that bring the advantages of silicon technology to biochemistry and new drug research."

According to Infineon, the neuro-chip integrates 128 x 128 sensors in an array pattern covering one square millimetre. A sophisticated electronic circuit is integrated below each sensor, which amplifies and processes the extremely weak signals for transfer to a computer system for processing. Individual neurons are placed into a nutrient solution above the sensor array, which keeps the neurons alive. Infineon says that the sensor density is approximately 300 times greater than today's common methods for studying neurons, which use glass substrates with vapour-deposited metallic lanes to contact the neuron. Each sensor on the chip is separated by a distance of just eight microns. Typical size of neurons is between 10-50 mm.

The neuro-chip’s sensor grid is 1 x 1 mm. The integrated circuitry enables it to record, amplify and process the more than 32 million information bytes per second that are delivered by the 16 384 sensors on the grid
The neuro-chip’s sensor grid is 1 x 1 mm. The integrated circuitry enables it to record, amplify and process the more than 32 million information bytes per second that are delivered by the 16 384 sensors on the grid

Instead of sequentially checking every single neuron, the neuro-chip surveys several neurons at the same time, which gives more statistically relevant data. Additionally, the chip enables recording of the operating sequence of electrical activity within nerve tissue over a defined time. Every second, it can record more than 2000 single values for each of its 16384 sensors. The data can then be transformed into a colour picture for visual analysis. Researchers can detect from this data how complete nerve tissues react to electrical stimulation or certain chemical substances in a given period of time.

A living nerve cell connected to the neuro-chip. The typical size of neurons is between 10–50 mm
A living nerve cell connected to the neuro-chip. The typical size of neurons is between 10–50 mm

Infineon says that the chip is based on a standard CMOS technology extended with additional process steps to realise the capacitive sensors array. Total area measures 5 x 6 mm, including the circuitry required to amplify, process, and transmit the data off-chip. The neuro-chips can detect and handle voltage changes with peaks ranging from 100 µV to 5 mV.

For more information see www.infineon.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the Editor's desk: Growth through inclusivity
Technews Publishing News
As the engineering fields in South Africa continue to make progress toward gender equality, we are finally starting to see the presence and contribution of women in engineering and industrial roles.

Read more...
KITE 2025 proves its value
News
The KwaZulu-Natal Industrial Technology Exhibition (KITE) 2025 confirmed its place as KwaZulu-Natal’s must-attend industrial event, drawing thousands of industry professionals.

Read more...
Otto Wireless Solutions announces promotion of Miyelani Kubayi to technical director
Otto Wireless Solutions News
Otto Wireless Solutions is proud to announce the promotion of Miyelani Kubayi to the position of technical director, effective 1 August 2025.

Read more...
DMASS experiences continued slowdown
News
The European electronic components distribution market continued its downward trajectory in the second quarter of 2025, according to new figures released by DMASS.

Read more...
World-first zero second grid-to-backup power switch
News
JSE-listed cable manufacturer, South Ocean Electric Wire, has completed a solar installation it says marks a global first: a seamless switch from grid to backup power in zero seconds.

Read more...

News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
Cobots for opto production line
News
OMC deploys cobots to improve throughput 10x, while maintaining quality and ensuring consistency of fibre optic production.

Read more...
SACEEC celebrates standout industrial innovation on the KITE 2025 show floor
News
Exhibitor innovation took the spotlight at the KITE 2025 as the South African Capital Equipment Export Council announced the winners of its prestigious New Product & Innovation Awards.

Read more...
SA team for International Olympiad in Informatics
News
The Institute of Information Technology Professionals South Africa has named the team that will represent South Africa at this year’s International Olympiad in Informatics.

Read more...
Anritsu and Bluetest to support OTA measurement
News
Anritsu Company and Sweden-based Bluetest AB have jointly developed an Over-The-Air measurement solution to evaluate the performance of 5G IoT devices compliant with the RedCap specification.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved