Electronics Technology


Transducer links sound, light and radio waves

18 May 2016 Electronics Technology

Researchers working at the National Institute of Standards and Technology (NIST) in the USA have developed a ‘piezo-optomechanical circuit’ that converts signals among optical, acoustic and radio waves.

A system based on this design could move and store information in next-generation computers.

While Moore’s Law, the idea that the number of transistors on an integrated circuit will double every two years, has proven remarkably resilient, engineers will soon begin to encounter fundamental limits. As transistors shrink, heat and other factors will begin to have magnified effects in circuits. As a result, researchers are increasingly considering designs in which electronic components interface with other physical systems that carry information such as light and sound.

Interfacing these different types of physical systems could circumvent some of the problems of components that rely on just one type of information carrier, if researchers can develop efficient ways of converting signals from one type to another (transduction). For example, light is able to carry a lot of information and typically doesn’t interact with its environment very strongly, so it doesn’t heat up components like electricity does.

As useful as light is, however, it isn’t suited to every situation. Light is difficult to store for long periods, and it can’t interact directly with some components of a circuit. On the other hand, acoustic wave devices are already used in wireless communications technology, where sound is easier to store for long periods in compact structures since it moves much more slowly.

To address such needs, NIST researchers and their collaborators built a piezoelectric optomechanical circuit on a chip. At the heart of this circuit is an optomechanical cavity, which in their case consists of a suspended nanoscale beam. Within the beam are a series of holes that act sort of like a hall of mirrors for light (photons). Photons of a very specific colour or frequency bounce back and forth between these mirrors thousands of times before leaking out. At the same time, the nanoscale beam confines phonons, that is, mechanical vibrations, at a frequency of billions of cycles per second (GHz).

The photons and phonons exchange energy so that vibrations of the beam influence the buildup of photons inside the cavity, while the buildup of photons inside the cavity influences the size of the mechanical vibrations. The strength of this mutual interaction, or coupling, is one of the largest reported for an optomechanical system.

One of the researchers’ main innovations came from joining these cavities with acoustic waveguides, which are components that route sound waves to specific locations. By channelling phonons into the optomechanical device, the group was able to manipulate the motion of the nanoscale beam directly. Because of the energy exchange, the phonons could change the properties of the light trapped in the device.

To generate the sound waves, which were at GHz frequencies, they used piezoelectric materials, which deform when an electric field is applied to them and vice versa. By using a structure known as an ‘interdigitated transducer’ (IDT), which enhances this piezoelectric effect, the group was able to establish a link between radio frequency electromagnetic waves and the acoustic waves. The strong optomechanical links enable them to optically detect this confined coherent acoustic energy down to the level of a fraction of a phonon.

They also observed controllable interference effects in sound waves by pitting electrically and optically generated phonons against each other. According to one of the paper’s co-authors, Kartik Srinivasan, the device might allow detailed studies of these interactions and the development of phononic circuitry that can be modified with photons.

“Future information processing systems may need to incorporate other information carriers, such as photons and phonons, in order to carry out different tasks in an optimal way,” says Srinivasan, a physicist at NIST’s Centre for Nanoscale Science and Technology. “This work presents one platform for transducing information between such different carriers.”

For more information visit www.nist.gov





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

140 W USB-C PD reference design
Altron Arrow Electronics Technology
The design has a wide input range of 90 to 264 V AC, 50-60 Hz, and supports an output voltage range of 5 to 28 V (USB-PD 3.1 specification).

Read more...
Nanometre-precision piezo actuators
RS South Africa Electronics Technology
TDK Corporation has announced two new piezo actuators that are characterised by a wide dynamic range, a high force-to-volume ratio, but with precision in the nanometre range.

Read more...
Webinar: The evolving electrification of the power distribution system
Infineon Technologies Electronics Technology
New connected car functionality, along with the necessity to reduce the cost, weight and complexity associated with wire harnesses, has led to the transformation of the power distribution system in automotive engineering.

Read more...
Improved MnZn material for power conversion industry
Sivan Electronic Supplies Electronics Technology
Cosmo Ferrites Ltd, a leading manufacturer of soft ferrites, has launched an improved version of CF295 for the power conversion industry.

Read more...
Common mode filter for automotive Ethernet
Avnet Abacus Electronics Technology
TDK Corporation has announced the introduction of its new ACT1210E Series common mode filter for automotive Ethernet 10BASE-T1S.

Read more...
Energising the industrial edge
Electronics Technology
As if the drive to decarbonise energy as part of sustainability and climate change efforts was not enough, the recent rise in energy prices has brought into sharp contrast the need to re-examine how we generate, distribute, and consume electricity.

Read more...
Samsung begins chip production using 3 nm process technology
EBV Electrolink Electronics Technology
The optimised 3 nm process with GAA architecture achieves 45% lower power usage, 23% improved performance and 16% smaller surface area compared to 5 nm process.

Read more...
Panasonic releases its updated touch-sensitive knob
Altron Arrow Electronics Technology
Panasonic, in conjunction with Microchip, has launched an update to its existing Magic Knob, a capacitive knob ready for standard touch sensors for use in controlling automotive information displays.

Read more...
Microchip’s new IC to replace Hall effect position sensors
Altron Arrow Electronics Technology
The LX34070 IC from Microchip is set to help accelerate the global move away from expensive and less accurate magnet-based solutions for safety-critical EV motor position monitoring.

Read more...
A brief history of HBTs
Conical Technologies Electronics Technology
In 1947 the engineers at Bell Labs were tasked with developing a transistor. This development heralded the beginning of the semiconductor industry which changed the world forever. Transistors would have ...

Read more...