Telecoms, Datacoms, Wireless, IoT


Accounting for PIM with distributed antenna installations

28 August 2019 Telecoms, Datacoms, Wireless, IoT

Passive intermodulation (PIM) distortion is the result of discontinuities, metal-to-metal contact, and material properties that lead to nonlinear characteristics of typically linear passive transmission lines and components.

PIM can be induced in a variety of RF components, such as connectors, adaptors, cable, combiners, splitters, couplers, tappers, attenuators, terminators, antennas and cable-to-board interconnect.

PIM is generated when two or more signal components at different frequencies interact at a non-linear junction and create a distortion product from frequency mixing. PIM becomes an issue when the distortion product of a transmission is either reflected back toward a sensitive receiver and is in the receive band, or a distortion product is transmitted and received by nearby communication systems susceptible to the particular distortion product. Due to the passive mixing of PIM generators, the power levels produced by PIM generators is generally weak, and only higher-power transmission signals tend to generate PIM power levels that are significant.

In years past, PIM issues were avoided by choosing frequency bands and filters that mitigated the amount of PIM that could impact receive bands. However, modern cellular, Wi-Fi, emergency/public service bands, new 5G cellular bands, ISM bands, TV white space bands, and other wireless services are often used in conjunction, especially with distributed antenna systems (DAS).

Many DAS are designed and installed to carry multi-band signals, either from a variety of cellular carriers, emergency/public safety, Wi-Fi, and other building automation services. Hence, the antennas, amplifiers, filters and transmission lines for DAS are all designed to operate over a wide range of sub-6 GHz frequencies, which is subsequently where the most spectrum congestion is and the greatest harm from PIM can occur. With multi-carrier systems PIM products can potentially be created by the mixing of any combination of signals and have a higher chance of landing in the bandwidth of sensitive wideband receivers.

Narrowband systems are less susceptible to PIM, as the passband of the receiver tends to be very narrow, so a precise combination of signals is necessary to create a PIM product that lands in that narrow bandwidth. However, with modern highly modulated wideband communication systems, such as 4G LTE, Wi-Fi, and new 5G NR sub-6 GHz frequency bands, receive bandwidth is much wider, and the heavily modulated wideband signals also generate much wider-band PIM products than narrowband signals.

For example, if the fundamentals from the two mixing signals is 10 MHz, then the third-order product will have three times the bandwidth (30 MHz) and the fifth-order product will have five times the bandwidth (50 MHz). With heavily modulated wideband signals, especially those that use spread spectrum techniques, the receive signals are often very weak, and PIM products that overlap with the receiver bandwidth could easily desensitise the receiver and dramatically disrupt communications.

PIM considerations specific to DAS

With DAS, another large PIM concern is the metallic structures within buildings, transportation stations, stadiums, etc. that are nearby the remote radio heads (RRH) or distributed antennas. If there are any metallic structures within a few wavelengths of the antenna, then reflections with distortion products could be received by the antennas, amplified, and carried to a receiver.

There are a variety of low-PIM antenna technologies, as well as quasi-omni antennas and the use of multiple directional antennas precisely positioned to have antenna patterns that avoid PIM generators in the environment. Also, many DAS installation mechanisms allow for changing the position of a RRH or antenna by tens of centimetres, which can significantly reduce the strength of environmental PIM generators.

Moreover, PIM transmitted and generated within the environment by other RRH, DAS antennas, and other wireless communication systems could also impact wideband DAS in hard-to-predict ways. The reason multi-carrier and multi-frequency systems are more challenging to predict is that with each additional signal, the mixing products become much more complex.

There are additional temporal considerations for PIM in DAS systems, as the environment and signals around the DAS are likely non-static. Hence, changing environmental components could lead to PIM generated at different times and in impossible-to-diagnose situations. Therefore, it is often beneficial for DAS installers to ensure that the entire system exhibits as low an internal PIM level as possible, which makes detecting, identifying and troubleshooting external PIM factors easier and more reliable.

Another area of concern for DAS systems and PIM are the large amount of connectors, adaptors, combiners, splitters, couplers, hybrids, attenuators, and other passive components that are often installed in-line to the transmission path. The cables, interconnect, connectors, and metallic features of any of these components could generate PIM, and unless they are tested once installed, their installed PIM performance may be very different than what is indicated on the datasheet.

This is especially a concern for components with ferromagnetic and ferrimagnetic elements. Though ferromagnetic metals and components can be avoided with PIM-susceptible systems, it is often difficult to avoid ferrimagnetic components, such as isolators, circulators, and phase shifters, which tend to produce higher levels of PIM than other components.

Also, the proximity of a component to a signal source impacts the strength of the distortion products generated. Therefore, placement and planning of connectors, passive, and even active components, can have a significant effect on the amount of PIM reflected back to the receiver.

Another important factor to consider is superposition, in that every distortion product that is generated will form a compound reflected signal. With complex DAS, this could lead to several distortion products within the receiver’s bandwidth combining power, which makes such complex multi-carrier DAS systems even more susceptible to PIM with increased opportunity for higher-power distortion products from combinations of even low-power transmissions.

For more information contact Andrew Hutton, RF Design, +27 21 555 8400, [email protected], www.rfdesign.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
3,75 GHz RF inductor
RF Design Passive Components
The ceramic chip wire wound inductor from Coilcraft features a DC resistance of 1 O, a DC current of 175 mA, and a self-resonant frequency of 3,75 GHz.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...