Telecoms, Datacoms, Wireless, IoT


EEMBC working on benchmarks for IoT

31 January 2017 Telecoms, Datacoms, Wireless, IoT News

EEMBC, the Embedded Microprocessor Benchmark Consortium, is developing new benchmarks for the Internet of Things (IoT) industry.

The first benchmark, intended to ensure optimum efficiency of security implementations, will aim to provide an industry-created and standardised tool for application developers to quickly, accurately and equitably compare the performance and energy efficiency of security solutions targeted at IoT end-point applications.

“Security is a priority of application developers, though they are typically concerned that implementing security functions within their IoT devices will hurt performance and lower battery life,” said EEMBC president, Markus Levy. “Therefore, a critical goal of our new benchmark will be to quantify the latency and energy impact of implementing security to allow developers to select the optimal combination of microcontroller, hardware and/or software security products for their application.”

The EEMBC IoT Security benchmark will be rolled out in phases. The first phase, planned for beta release in the first quarter of 2017, will contain tests to evaluate a variety of standalone security functions such as SHA256, AES and ECC. The benchmark will enable EEMBC members to implement these algorithms on their microcontrollers using software libraries or hardware accelerators, whichever yields the best balance of performance, energy and cost.

In subsequent phases, the working group plans to combine the standalone functions into specific IoT profiles that will allow users to better see, control and optimise the impact of security at the system level. The group’s modular approach also makes it easier for users to take advantage of optimised security implementations, such as cryptographic processors or modules.

The second benchmark is being developed to measure how gateways perform in specific IoT vertical markets. In general, an IoT gateway lives at or near the ‘edge’. It is used to gather and manage data from multiple sources (sensors, IoT devices), process data locally (instead of in the cloud), react to and predict events, and send data to the cloud. IoT gateways are available in many form factors to support a wide range of vertical applications including industrial automation, transportation (fleet management), digital media (retail advertising), smart cities, home automation, agriculture and healthcare.

The IoT gateway benchmark will utilise a distributed approach with client-server interactions and workloads generated across multiple physical ports. The benefit of this methodology is that it will test the system as a whole, including the processor, physical and wireless interfaces (e.g. Wi-Fi, Bluetooth), operating system and other elements.

“The EEMBC IoT gateway benchmark will standardise assumptions about gateway operational conditions to ensure meaningful comparisons between gateway products,” said Paul Teich, principal analyst at Tirias Research and technical advisor to EEMBC. “Today, without this standardised methodology, IoT gateway benchmarking is not realistic, with buyers having to guess about each gateway’s potential performance for things such as sensor fusion, type of processing workloads, and how much data traffic to manage.”

The aforementioned benchmarks will complement the EEMBC Connect benchmark, also in development. The latter will provide a method to reliably determine the combined energy consumption of the system, taking into consideration the real-world effects of sensor inputs and communication (e.g. Bluetooth and Wi-Fi).

For more information visit www.eembc.org





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...
Innovative upgrade process for 2G/3G
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
What is likely to happen during the sunset period for 2G and 3G signals, especially on the back of already near-obsolescence of 2G network equipment, is for the availability of the connectivity mediums to begin to reduce between now and the shutdown date.

Read more...
RFID in aviation: the ultimate solution to baggage mishandling
Osiris Technical Systems Editor's Choice Telecoms, Datacoms, Wireless, IoT
Creating a solution that enables real-time tracking of airline baggage on a global scale seems like an impossible task when considering the number of airlines, airports, and passengers that flow through and between them.

Read more...