News


Communication technique developed for implanted medical devices

5 October 2016 News Electronics Technology

Researchers at the University of Washington have devised a method of wireless communication that allows devices such as brain implants, contact lenses, credit cards and smaller wearable electronics to talk to everyday devices such as smartphones and watches, without needing their own power source.

Interscatter communication generates low-power Wi-Fi transmissions using everyday mobile devices. In one example, Bluetooth signals from a smartwatch (left) transmit data from a neural device that can be implanted in a patient’s brain (right) to a smartphone via Wi-Fi.
Interscatter communication generates low-power Wi-Fi transmissions using everyday mobile devices. In one example, Bluetooth signals from a smartwatch (left) transmit data from a neural device that can be implanted in a patient’s brain (right) to a smartphone via Wi-Fi.

Dubbed ‘interscatter communication’, the technology works by converting Bluetooth signals into Wi-Fi transmissions over the air. Using only reflections, an interscatter device such as a smart contact lens converts Bluetooth signals from a smartwatch, for example, into Wi-Fi transmissions that can be picked up by a smartphone.

The new technique was described in a paper presented at the annual conference of the Association for Computing Machinery’s Special Interest Group on Data Communication (SIGCOMM 2016) in Brazil. “Wireless connectivity for implanted devices can transform how we manage chronic diseases,” said co-author Vikram Iyer, an electrical engineering doctoral student. “For example, a contact lens could monitor a diabetic’s blood sugar level in tears and send notifications to the phone when the blood sugar level goes down.”

The engineers also developed the first smart contact lens antenna that can communicate directly with devices like smartwatches and phones.
The engineers also developed the first smart contact lens antenna that can communicate directly with devices like smartwatches and phones.

Due to their size and location within the body, these smart contact lenses are too constrained by power demands to send data using conventional wireless transmissions. That means they so far have not been able to send data using Wi-Fi to smartphones and other mobile devices. Those same requirements also limit emerging technologies such as brain implants that treat Parkinson’s disease, stimulate organs and may one day even reanimate limbs.

The team of electrical engineers and computer scientists has demonstrated for the first time that these types of power-limited devices can ‘talk’ to others using standard Wi-Fi communication. Their system requires no specialised equipment, relying solely on mobile devices commonly found with users to generate Wi-Fi signals using 10 000 times less energy than conventional methods.

The team’s process relies on a communication technique called backscatter, which allows devices to exchange information simply by reflecting existing signals. Because the technique enables inter-technology communication by using Bluetooth signals to create Wi-Fi transmissions, the team calls it 'interscattering'. Interscatter communication uses the Bluetooth, Wi-Fi or ZigBee radios embedded in common mobile devices like smartphones, watches, laptops, tablets and headsets, to serve as both sources and receivers for these reflected signals.

In one example the team demonstrated, a smartwatch transmits a Bluetooth signal to a smart contact lens outfitted with an antenna. To create a blank slate on which new information can be written, they developed an innovative way to transform the Bluetooth transmission into a ‘single tone’ signal that can be further manipulated and transformed. By backscattering that single tone signal, the contact lens can encode data – such as health information it may be collecting – into a standard Wi-Fi packet that can then be read by a smartphone, tablet or laptop.

The challenge, however, is that the backscattering process creates an unwanted mirror image copy of the signal, which consumes more bandwidth as well as interferes with networks on the mirror copy Wi-Fi channel. But the researchers developed a technique called ‘single sideband backscatter’ to eliminate the unintended by-product. “That means that we can use just as much bandwidth as a Wi-Fi network and you can still have other Wi-Fi networks operate without interference,” said co-author and electrical engineering doctoral student Bryce Kellogg.

“Preserving battery life is very important in implanted medical devices, since replacing the battery in a pacemaker or brain stimulator requires surgery and puts patients at potential risk from those complications,” added co-author Joshua Smith, associate professor of electrical engineering and of computer science and engineering. “Interscatter can enable Wi-Fi for these implanted devices while consuming only tens of microwatts of power.”

Beyond implanted devices, the researchers have also shown that their technology can apply to other applications such as smart credit cards. The team built credit card prototypes that can communicate directly with each other by reflecting Bluetooth signals coming from a smartphone. This opens up possibilities for smart credit cards that can communicate directly with other cards and enable applications where users can split the bill by just tapping their credit cards together.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor’s desk: Windows 10’s end of support arrives bringing industrial risks
Technews Publishing News
By the time you read this column, support for non-LTSC editions of Windows 10 will have ended, officially having their last day on 14 October 2025. This means no more security patches, feature updates, ...

Read more...
Electronic News Digest
News
A brief synopsis of current global news relating to the electronic engineering fields with regards to company finances, general company news, and engineering technologies.

Read more...
Correction: Marijana Abt, Rebound Electronics
News
      In the August issue of Dataweek magazine, the article titled ‘Celebrating innovation, leadership, and the next generation’ featured Marijana Abt, senior account manager at Rebound Electronics. Owing ...

Read more...
Trasna and RF Design announce distribution agreement
RF Design News
Trasna and RF Design have announced a strategic distribution agreement for cellular IoT solutions which will ensure seamless availability of Trasna’s cellular connectivity solutions.

Read more...
Local partnership puts demand-side management to work in South Africa
News
Sensor Networks has partnered with European demand-side management specialist ThermoVault to bring advanced load-shifting capabilities to one of the country’s biggest energy consumers: the household geyser.

Read more...
Hisense SA launches year-long learnership programme for youth
News
Hisense SA’s manufacturing plant in Atlantis recently welcomed 100 young people from the local community, to embark on a year-long learnership and skills development programme.

Read more...
Comtest hosts channel partners
Comtest News
Comtest, together with FLUKE, recently set the stage for an unforgettable afternoon as they welcomed over 80 Channel Partners to their annual celebration of excellence.

Read more...
RS South Africa and Qhubeka empower learners through the gift of mobility
RS South Africa News
Through its bicycle donation initiative, 354 bicycles have been distributed to date, empowering students to access education more easily by reducing the physical and economic barriers posed by long daily commutes.

Read more...
Deca and SST announce strategic collaboration
News
The collaboration provides customers with a modular, memory-centric foundation for advanced multi-die architectures.

Read more...
Specialised Exhibitions transitions to new name: Montgomery Group Africa
News
As part of a strategic move to streamline operations, strengthen regional alignment, and support long-term growth, Specialised Exhibitions has transitioned to a new name: Montgomery Group Africa.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved