Power Electronics / Power Management


The cause of Li-ion battery fires

30 September 2024 Power Electronics / Power Management

Behind the convenience of Li-ion batteries lies a potentially hazardous science. SafeQuip delves into the construction of Li-ion batteries, the phenomenon of thermal runaway, and potential hazards associated with these power sources.

Understanding Li-ion battery construction

At their core, Li-ion batteries consist of three essential components:

1. Anode: This is the negative electrode, typically made of a carbon-based material that stores lithium ions when the battery is charged.

2. Cathode: The positive electrode, often composed of lithium cobalt oxide or other lithium-based compounds, is responsible for receiving and releasing Li-ions during charging and discharging.

3. Electrolyte: This is like the battery’s bloodstream. It is a liquid or gel that helps lithium ions move around between the cathode and anode. It’s important to note here that this liquid or gel is flammable.

These three elements are sandwiched together and housed within a protective casing. The casing serves as a barrier to contain the potentially volatile materials inside the battery.

Thermal runaway

Thermal runaway in Li-ion batteries is a dangerous situation where the battery gets extremely hot, leading to the rapid release of heat and gases, which can result in fires or explosions. Several factors can trigger thermal runaway, including:

• Overcharging: Charging a Li-ion battery beyond its recommended voltage limits can cause the electrolyte to break down, leading to overheating.

• Physical damage: Punctures, crushing, or mechanical stress can compromise the battery’s structure, allowing internal components to come into contact and generate heat.

• High temperatures: Exposure to excessive heat, such as leaving a device in a hot car, can accelerate the onset of thermal runaway.

• Manufacturing defects: Faulty manufacturing processes or substandard materials can weaken the battery’s internal components, increasing the risk of thermal runaway.

Potential hazards from Li-ion batteries

Potential hazards associated with Li-ion batteries include:

• Fire: When a Li-ion battery undergoes thermal runaway, it can generate enough heat to ignite the internal materials or surrounding objects. This can lead to a fire, posing a significant safety risk.

• Explosion: In extreme cases, the buildup of pressure from the gases produced during thermal runaway can rupture the battery casing, resulting in an explosion. While such incidents are rare, they can cause severe injuries or property damage.

• Toxic gas emission: Li-ion batteries may emit toxic gases, such as hydrogen fluoride and phosphorus pentafluoride, when they overheat or explode. Inhalation of these gases can be harmful to human health.

Mitigating the risks

There are a few practical steps one can take to help stay safe:

• Use genuine batteries: Always use genuine, manufacturer-recommended batteries and chargers for devices. Counterfeit or substandard products are more likely to pose risks.

• Avoid extreme temperatures: Keep devices and batteries away from extreme temperatures, both hot and cold. Avoid leaving them in direct sunlight or inside a hot vehicle.

• Inspect for damage: Regularly inspect devices and batteries for any signs of physical damage, such as swelling, punctures, or leaks. If any issues are noticed, the battery or device must be replaced.

• Charge safely: Charge devices on non-flammable surfaces, away from combustible materials. Do not leave them unattended while charging, especially overnight.

• Store properly: If Li-ion batteries are needed to be stored for an extended period, keep them in a cool, dry place with a partial charge (around 50%). Avoid storing them fully charged or fully depleted.

• Dispose of old batteries: Old Li-ion batteries, that are no longer in use, should be recycled properly.

• Invest in a Lith-Ex fire extinguisher: Lith-Ex fire extinguishers contain AVD, a naturally occurring agent specifically designed for Li-ion battery fires. AVD is made from the naturally occurring mineral, vermiculite, combined with water. It is a very effective agent that cools, encapsulates, prevents propagation, and extinguishes Li-ion battery fires.

For more information visit www.safequip.co.za




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Wine farm turns to solar installation for power
Current Automation Power Electronics / Power Management
Slanghoek Wine farm opted into a power purchase agreement to lower overall electricity costs and enter a true sustainable future, with a price-competitive edge on lower running costs.

Read more...
Industrial PSU family
Brabek Power Electronics / Power Management
The RACPRO1 family of PSUs supports a universal DC input voltage range from 430 to 850 V DC, allowing the parts to support renewable energy and microgrid applications.

Read more...
Integrated POL voltage regulators
EBV Electrolink Power Electronics / Power Management
Infineon’s TDA38807 and TDA38806 are their highest density high-efficiency integrated point-of-load (IPOL) solutions for smart enterprise systems.

Read more...
Hi-Rel quarter-brick converters
Accutronics Power Electronics / Power Management
Gaia Converter’s quarter-brick series DC-DC power modules provides output power levels ranging from 75 to 250 W in fixed output voltages.

Read more...
1700 V GaN Switcher IC
Future Electronics Power Electronics / Power Management
Power Integrations has introduced a new member of its InnoMux-2 family of single-stage regulated multi-output offline power supply ICs, the industry’s first 1700 V gallium nitride switch.

Read more...
How ADI battery management solutions empower safer, smarter robots
Altron Arrow Editor's Choice Power Electronics / Power Management
Choosing an appropriate battery pack and its accompanying battery management system is a critical decision in designing an autonomous mobile robot.

Read more...
Industrial power supply range
RFiber Solutions Power Electronics / Power Management
SynQor’s ruggedised AC-DC and DC-DC converters and filters are designed for a wide range of industrial applications, including those required to withstand harsh environments.

Read more...
PSUs for industrial applications
Power Electronics / Power Management
RECOM’s REDIIN120/240/480 series of AC-DC converters perfectly corresponds with customer needs by exhibiting high efficiency and low energy consumption at no load.

Read more...
Highest density automotive-grade power modules
Altron Arrow Power Electronics / Power Management
Vicor has released three automotive-grade power modules for 48 V EV systems, which deliver industry-leading power density.

Read more...
MOSFET for automotive applications
Altron Arrow Power Electronics / Power Management
Infineon’s OptiMOS 7 100 V is offered in the company’s versatile and robust, high-current SSO8 5 x 6 mm2 SMD package.

Read more...