Manufacturing / Production Technology, Hardware & Services


ST and Soitec cooperate on SiC substrate manufacturing tech

23 November 2022 Manufacturing / Production Technology, Hardware & Services

STMicroelectronics and Soitec have announced the next stage of the cooperation on Silicon Carbide (SiC) substrates, with the qualification of Soitec’s SiC substrate technology by ST planned over the next 18 months. The goal of this cooperation is the adoption by ST of Soitec’s SmartSiC technology for its future 200 mm substrate manufacturing.

“The transition to 200 mm SiC wafers will bring substantial advantages to our automotive and industrial customers as they accelerate the transition toward electrification of their systems and products. It is important in driving economies of scale as product volumes ramp,” said Marco Monti, president automotive and discrete group, STMicroelectronics. “We have chosen a vertically integrated model to maximise our know-how across the full manufacturing chain, from high-quality substrates to large-scale front- and back-end production. The goal of the technology cooperation with Soitec is to continue to improve our manufacturing yields and quality.”

“The automotive industry is facing major disruption with the advent of electric vehicles. Our cutting-edge SmartSiC technology, which adapts our unique SmartCut process to silicon carbide semiconductors, will play a key role in accelerating its adoption,” said Bernard Aspar, chief operating officer of Soitec. “The combination of Soitec’s SmartSiC substrates with STMicroelectronics’ industry-leading silicon carbide technology and expertise is a game-changer for automotive chip manufacturing that will set new standards.”

Silicon Carbide (SiC) is a disruptive compound semiconductor material with intrinsic properties providing superior performance and efficiency over silicon in key, high-growth power applications for electric mobility and industrial processes. It allows for more efficient power conversion, lighter and more compact designs, and overall system-design cost savings – all key parameters and factors for success in automotive and industrial systems. Transitioning from 150 mm to 200 mm wafers will enable a substantial capacity increase, with almost twice the useful area for manufacturing integrated circuits, delivering 1,8 to 1,9 times as many working chips per wafer.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Ryzen-based computer on module
Altron Arrow AI & ML
SolidRun announced the launch of its new Ryzen V3000 CX7 Com module, configurable with the eight-core/16-thread Ryzen Embedded V3C48 processor.

Read more...
Optimising cleaning products used in electronics manufacturing
Manufacturing / Production Technology, Hardware & Services
IPC, in collaboration with ChemFORWARD, are hosting a webinar titled ‘Optimising Cleaning Products Used in Electronics Manufacturing’.

Read more...
Robust and customisable SBC
Altron Arrow DSP, Micros & Memory
Pairing the powerful i.MX8M Plus System on Module (SoM) from SolidRun, which features the i.MX 8M Plus SoC from NXP, this high-performance SBC is set to transform industrial environments.

Read more...
New family supports future cryptography
Altron Arrow DSP, Micros & Memory
NXP has introduced its new i.MX 94 family, which contains an i.MX MPU with an integrated time-sensitive networking (TSN) switch, enabling configurable, secure communications with rich protocol support in industrial and automotive environments.

Read more...
NXP’s all-purpose microcontroller series
Altron Arrow DSP, Micros & Memory
NXP has released its MCX A14x and A15x series of all-purpose microcontrollers which are part of the larger MCX portfolio that shares a common Arm Cortex-M33 core platform.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Low noise 3-axis MEMS accelerometers
Altron Arrow DSP, Micros & Memory
The ADXL357 and ADXL357B from Analog Devices are digital outputs, low noise density, low 0 g offset drift, low power, three-axis accelerometers with selectable measurement ranges.

Read more...
Infineon launches Edge Ai software solution
Altron Arrow Analogue, Mixed Signal, LSI
Infineon has introduced DEEPCRAFT, a new software solution category brand for Edge AI and machine learning, after the company recognised the huge potential of Edge AI for the market.

Read more...
Cree: Illuminating the future of LED technology
Altron Arrow Editor's Choice Opto-Electronics
As a pioneer in this field, Cree LED has been instrumental in shaping the LED landscape, driving innovation and performance in this sector.

Read more...