Telecoms, Datacoms, Wireless, IoT


NIST finds wireless performance consistent across 5G mmWave bands

29 June 2022 Telecoms, Datacoms, Wireless, IoT


Wireless transmissions can take many routes to the intended receiver. The coloured lines are reconstructions of measured paths of millimetre-wave signals between a transmitter (not visible) and receiver (lower middle) in an NIST industrial control room. Each path is precisely characterised in terms of length and angle to the receiver. These paths are all secondary, meaning reflected or diffracted signals.

Settling a key dispute in the wireless communications field, researchers at the US National Institute of Standards and Technology (NIST) found that transmission performance is consistent across different bands of the millimetre-wave (mmWave) spectrum targeted for high-speed, data-rich 5G systems.

Wireless systems are moving to the mmWave spectrum at 10-100 GHz, above crowded cellular frequencies as well as early 5G systems around 3 GHz. System operators tend to prefer lower bands of the new mmWave spectrum. One reason is that they are influenced by a formula that says more signals are lost at higher frequencies due to smaller wavelengths, resulting in a smaller useful antenna area. But until now, measurements of this effect by many organisations have disagreed over whether this is true.

NIST researchers developed a new method to measure frequency effects, using the 26,5-40 GHz band as a target example. After extensive study in the laboratory and two real-world environments, NIST results confirmed that the main signal path – over a clear “line of sight” between transmitter and receiver – does not vary by frequency, a generally accepted thesis for traditional wireless systems but until now not proven for the mmWave spectrum. The results are described in a new paper https://ieeexplore.ieee.org/document/9759479.

The team also found that signal losses in secondary paths – where transmissions are reflected, bent or diffused into clusters of reflections – can vary somewhat by frequency, depending on the type of path. Reflective paths, which are the second strongest, and critical for maintaining connectivity, lost only a little signal strength at higher frequencies. The weaker bent and diffuse paths lost a bit more. Until now, the effects of frequency on this so-called multipath were unknown.

“This work may serve to demystify many misconceptions about propagation around higher frequencies in 5G and 6G,” NIST electrical engineer Camillo Gentile said. “In short, while performance will be worse at higher frequencies, the drop in performance is incremental, so we do expect the deployment at 5G and eventually at 6G to be successful.”

The NIST method emphasises innovative measurement procedures and enhanced equipment calibration to make sure only the transmission channel is measured. The researchers used NIST’s SAMURAI (Synthetic Aperture Measurement UnceRtainty for Angle of Incidence) channel sounder, which supports design and repeatable testing of 5G mmWave devices with unprecedented accuracy across a wide range of signal frequencies and scenarios. The NIST system is unique in that antenna beams can be steered in any direction for precise angle-of-arrival estimates.

NIST’s main innovations in the new study, as discussed in the paper, were calibration procedures to remove the effects of channel sounder equipment from the measurements, extension of an existing algorithm to determine from a single measurement how individual paths vary by frequency, and studies in an industrial control centre and a conference room to classify the types of paths involved and determine any frequency effects.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

X-band radar
RF Design Editor's Choice Telecoms, Datacoms, Wireless, IoT
X-band radar systems, particularly those leveraging beamforming ICs (BFICs), advanced gallium nitride (GaN) and gallium arsenide (GaAs) components, are leading the way in providing the high-performance radar capabilities required for modern defence and surveillance.

Read more...
Reference board for cardio monitoring
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STDES-ESP01 reference board from STMicroelectronics demonstrates the capability of the ST1VAFE6AX and ST1VAFE3BX biosensors to detect ECG and SCG signals.

Read more...
LTE Cat 1 bis communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG810M series is a series of LTE Cat 1 bis wireless communication modules specially designed by Quectel for M2M and IoT applications.

Read more...
Quad-channel 16-bit converter
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The ARF0468 from Advance RF is a quad-channel mixed-signal processing chip, with each channel comprising three major functional modules: ADC/DDC/DDS.

Read more...
Tactical navigation system
Etion Create Telecoms, Datacoms, Wireless, IoT
Etion Create’s CheetahNAV Compact is a versatile tactical navigation system designed for security services, emergency services, and light all-terrain vehicles (ATVs) using offline navigation maps.

Read more...
Smart module for multi-media devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Powered by a Qualcomm processor, Quectel’s new SC200V is designed to deliver exceptional performance across system capabilities, multimedia functions, and network connectivity.

Read more...
Remote provisioning firmware added to SIMCom modules
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently announced that its range of Cat 1 bis IoT modules are now being prepared with the firmware necessary to support SGP.32 functionality.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
u-blox expands NORA-B2 BLE modules
RF Design Telecoms, Datacoms, Wireless, IoT
The new nRF54L chipset-based wireless modules reduce current consumption and double processing capacity, catering to diverse mass market segments.

Read more...