Telecoms, Datacoms, Wireless, IoT


The basics of RF LNA testing

28 July 2021 Telecoms, Datacoms, Wireless, IoT

To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

Low-noise amplifiers (LNAs) are a critical component for telecommunication and sensing systems, as the weak received signals often need to be at a higher signal level for optimal demodulation, digitisation, driving another circuit, or for measurements to be made.


Pasternack’s PE15A1000 is a 1-2 GHz LNA with 35 dB gain and SMA connectors.

LNAs are also used throughout signal chains to add gain to low-power signals when higher-power signals are needed at the input of other elements within the signal chain. This includes amplifying received signals from an antenna or sensor, or increasing the signal power level from local oscillators (LOs) or other frequency generation/drive circuits where it is necessary to ensure that minimal added noise is contributed.

The main purpose of an LNA is to add gain without adding noise, phase noise or distortion. Generally, LNAs are placed as close as possible to the input signal to minimise exposure of the circuit to noise prior to amplification, as any signal content within the bandwidth of an LNA is amplified. To ensure an LNA design or device performs as designed, there are several ways of evaluating these circuits. Mainly, these measurements are to produce S-parameters, gain, noise figure and linearity figures for a given device.

LNA S-parameter measurements and gain

S-parameter measurements can be made with an LNA that is properly supplied and biased using a vector network analyser (VNA), as LNAs are typically 2-port devices. Hence, only S11, S12, S22 and S21 parameters need to be measured. It is important to note that the S-parameters measured here are generally small-signal parameters, not large-signal parameters, which may be beneficial to measure when characterising LNAs with high gain and relatively high power levels as the load may impact the LNA’s performance substantially.

For low-power LNAs, a VNA measuring the S-parameters may be adequate to provide the gain (S21) if port 1 is the input and port 2 is the output. For higher-power LNAs, a signal generator driving the input port and either a power meter or spectrum analyser measuring the amplified input signal at the output can be used to determine the gain.

LNA linearity measurements

The linearity of an LNA is important to measure, as often the power delivered to receiver circuitry needs to be precisely controlled. The 1 dB compression point (P1dB) can be determined by varying the input power at a given frequency. It can be observed from plotting these measurements that at some point the power in compared to the power out relationship is no longer linear. The P1dB is when the gain (output) deviates by 1 dB from what it would otherwise be if the relationship remained linear.

The other linearity measurement commonly performed on LNAs is the third-order intercept used as a gauge of the intermodulation products produced by an LNA. This is measured by inputting two distinct frequencies at the same amplitude and measuring the input power compared to the third-order intermodulation product produced by the mixing of those two tones (2F1-F2 and 2F2-F1). This measurement is typically performed with a designated frequency spacing between the two tones to provide some point of comparison between LNAs.

LNA noise measurements

Most importantly, an LNA is often chosen for the device’s added noise performance, or noise figure (NF). This is a measure of how much noise an LNA adds to the signal passing through it. This measurement is typically done with a noise figure meter or noise figure analyser, and an RF signal generator. The test system is often calibrated using a calibrated noise source, to remove the uncertainty from the measurement setup and to isolate the noise response of the device under test (DUT). NF is most commonly given in terms of decibels.

Other LNA features of note are:

• Gain flatness.

• Saturation power.

• Port impedance.

• Operating temperature.

• Stability.

• Supply and biasing.

• Electronic and environmental survivability/performance.

• Input and output voltage standing wave ratio (VSWR).


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Smart module for multi-media devices
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Powered by a Qualcomm processor, Quectel’s new SC200V is designed to deliver exceptional performance across system capabilities, multimedia functions, and network connectivity.

Read more...
Remote provisioning firmware added to SIMCom modules
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom recently announced that its range of Cat 1 bis IoT modules are now being prepared with the firmware necessary to support SGP.32 functionality.

Read more...
GNSS antenna redefining what’s possible
RF Design Telecoms, Datacoms, Wireless, IoT
u-blox has achieved what was once thought impossible with the launch of the DAN-F10N, the industry’s smallest and most reliable L1, L5 dual-band GNSS antenna module.

Read more...
Innovative satellite navigation receiver
Altron Arrow Telecoms, Datacoms, Wireless, IoT
STMicroelectronics has released an innovative satellite navigation receiver to democratise precise positioning for automotive and industrial applications.

Read more...
u-blox expands NORA-B2 BLE modules
RF Design Telecoms, Datacoms, Wireless, IoT
The new nRF54L chipset-based wireless modules reduce current consumption and double processing capacity, catering to diverse mass market segments.

Read more...
1 Mbit EEPROM with fast read/write capabilities
Telecoms, Datacoms, Wireless, IoT
The M24M01E-F from STMicroelectronics is a 1-Mbit I2C-compatible EEPROM that can operate with a supply voltage from 1,6 to 5,5 V.

Read more...
Danfoss radiator valve modification project demonstrates effectiveness of NeoMesh wireless mesh networking technology in smart buildings
Telecoms, Datacoms, Wireless, IoT
To demonstrate the suitability of NeoMesh in the Danfoss radiator valve, NeoCortec took the unusual step of modifying store-bought Ally eTRVs to produce proof-of-concept devices.

Read more...
12 GHz four-channel multi-function chip
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
The ARF0412 from Advance RF is a highly integrated four-channel multifunction chip operating in the X-band with a working frequency range of 8 to 12 GHz.

Read more...
Strengthening public infrastructure with RFID tech
Osiris Technical Systems Telecoms, Datacoms, Wireless, IoT
RFID technology, which enables automatic identification and tracking of objects, can play a pivotal role in enhancing the efficiency and resilience of public infrastructure.

Read more...
IoT/M2M-optimised LTE module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The EG810M series is a series of LTE Cat 1 bis wireless communication modules specially designed by Quectel for M2M and IoT applications.

Read more...