Telecoms, Datacoms, Wireless, IoT


Wireless comms and positioning solutions for eMobility

28 April 2021 Telecoms, Datacoms, Wireless, IoT

iCorp Technologies is one of the largest independent distributors of electronic components in southern Africa, with a formidable line card for IoT solutions. The company offers advanced product technology from its partners including Quectel Wireless Modules, Espressif Systems and HopeRF Electronics.

iCorp believes that the future is eMobility and strives to offer its customers tailor-made solutions including GNSS, Wi-Fi 6, Bluetooth 5 and energy harvesting technology to enable customers to bring their ideas and designs to reality.


Gerrie van Heerden, iCorp technical sales engineer.

The Global Navigation Satellite System (GNSS) provides a well understood, widely deployed and accepted way to accurately determine precise location. It therefore underpins navigation, tracking and tracing of goods and assets and with billions of GNSS devices already deployed, it has become pervasive. However, GNSS applications are not one-size-fits-all and organisations are challenged to find and deploy suitable solutions that meet the constraints of their applications.

In eMobility, ride-sharing providers have to carefully balance accuracy, cost, the power demand and the dimensional footprint of a GNSS module to ensure they select the optimum solution. Often, GNSS alone is not enough to pinpoint the location of small eMobility vehicles such as eScooters, so eMobility organisations typically augment GNSS with additional sensors and algorithms like Wi-Fi 6 modules from Espressif Systems.

eMobility encompasses electric cars and trucks and public transport in addition to ride-sharing and hailing services such as those from Uber and Lyft, plus micromobility solutions such as eBikes, eScooters and eSkateboards from companies like Bird, Lime and Didi, which are also offered by Uber and Lyft. In addition, new vehicle types such as last-mile delivery robots are facing the same sorts of challenges as the micromobility market.

All services succeed or fail based on the customer experience they provide. This starts right from the first interaction, so eMobility’s first challenge is to make the vehicle easy to find. Ride-sharing providers have demonstrated this can be convenient and simple but cars are larger devices and can accommodate more expensive, larger form-factor GNSS capabilities than eScooters,

The smaller size of eBikes and eScooters further hinders users’ ability to actually locate the bike in the first place. They can easily be hidden between parked cars, behind trees or obscured by street furniture. This lack of a clear view of satellites, caused by deep urban canyons, bad weather or parking garages, makes it very challenging for any GNSS module to provide an accurate position. This is compounded by multipath effects which are prevalent in deep urban canyons.

The challenge of locating devices also affects service providers. If ride-sharing providers can’t find their vehicles, they can’t maintain them, charge batteries and relocate them to areas of greatest demand. This costs service providers in wasted worker time as well as increased downtime of their vehicles.

In perfect conditions, when the sky is clear and there are no obstructions in the way, GNSS can tell users exactly where an eScooter is. However, perfect conditions seldom exist and micromobility vehicles therefore rely on additional methods to augment GNSS performance.

Dead reckoning solves many of the issues by combining wheel speed and inertial measurement unit (IMU) data – typically accelerometer and gyroscopic information – with GNSS. The position accuracy can be affected by issues such as changes in tyre pressure, road vibration and atmospheric differences that can all affect the performance of the dead reckoning engine when GNSS is challenged. In eMobility, dead reckoning is ideally suited and provides vast improvements to positioning in deep urban canyons.

Quectel’s LC79D is an L1/L5 dual-band, multi-constellation GNSS receiver that offers an ultra-low form factor with dimensions of 10,1 x 9,7 x 2,4 mm, making it ideal for space-constrained designs such as eMobility vehicles. The LC79D’s best-in-class price point, performance and low power consumption make it an ideal and unique solution. It can track L1 and L5 bands for satellite systems including GPS, Galileo and QZSS. On the L1 band, the LC79D can track the GLONASS and Beidou satellite systems and the module tracks the IRNSS system in the L5 band. Providing L1/L5 capability offers huge diversity and connection choice in even the most unfriendly locations.

In contrast with L1-only GNSS modules, the LC79D adds the L5 band which greatly increases the number of satellites available, improves position accuracy and helps mitigate the multipath challenge. Of further value to eMobility providers, the GNSS chipset, based on 28 nm process technology, is coupled with an advanced low-power management solution that enables low-power operation and positioning determination. This makes the module well suited for the power-sensitive and battery-powered systems used in eMobility.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Module combines 5G and NTN support
Quectel Wireless Solutions Telecoms, Datacoms, Wireless, IoT
Quectel Wireless Solutions announced the launch of its BG770A-SN ultra-compact 5G-ready satellite communication module, compliant with 3GPP releases 13, 14 and 17.

Read more...
Scalable and secure IoT device onboarding and management
Telecoms, Datacoms, Wireless, IoT
EasyPass is an enhancement within Cambium’s cnMaestro platform, aimed at providing local businesses with secure, efficient, and scalable device management, making it ideal for high-demand environments such as educational institutions, retail spaces, and corporate campuses.

Read more...
SIMCom’s A7673X series
Otto Wireless Solutions Telecoms, Datacoms, Wireless, IoT
SIMCom’s A7673X series is a Cat 1 bis module that supports LTE-FDD, with a maximum downlink rate of 10 Mbps and an uplink rate of 5 Mbps.

Read more...
ESP32-P4 SoC
iCorp Technologies DSP, Micros & Memory
Espressif Systems announced its latest SoC, the ESP32-P4 which is powered by a RISC-V CPU, with an AI instructions extension, an advanced memory subsystem, and integrated high-speed peripherals.

Read more...
Non-terrestrial network module
Altron Arrow Telecoms, Datacoms, Wireless, IoT
Fibocom unveiled its MA510-GL (NTN), a non-terrestrial networks module which is compliant with 3GPP Release 17 standard.

Read more...
Cellular IoT connectivity via satellite
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The Telit Cinterion cellular LPWA module will enable satellite data communication using the NB-IoT protocol, without any special hardware changes required for the integration of the cellular module in the customer application.

Read more...
Wireless module supports up to 600 Mbps
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCU865R is a high-performance Wi-Fi 6 and Bluetooth 5.3 LCC package module which can be used for WLAN and Bluetooth connections.

Read more...
Upgraded power inductor series
iCorp Technologies Passive Components
Sunlord’s multiphase co-fired power inductor HTF-MP series has upgraded the single-phase HTF-H products in terms of integrated applications.

Read more...
Unlocking the future of connectivity
Telecoms, Datacoms, Wireless, IoT
The battle for the 6 GHz spectrum band is heating up in South Africa, mirroring global debates on the allocation of spectrum between Wi-Fi and cellular operators.

Read more...
Quectel wireless module wins accolade
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The winners of the 2024 IoT Evolution 5G Leadership Award were recently announced, with Quectel walking away with an award for its modules which make 5G features more easily accessible for IoT applications, notably the company’s RG255C-GL.

Read more...