Telecoms, Datacoms, Wireless, IoT


Carrier Grade Linux 4.0 accelerates telecoms standards-based COTS adoption

5 September 2007 Telecoms, Datacoms, Wireless, IoT

Standards-based technologies are rapidly being adopted by the telecommunications industry, and for good reason.

Leveraging standards-based solutions allows telecom equipment manufacturers (TEMs) and network equipment providers (NEPs) to use commercial off-the-shelf (COTS) hardware and software systems across multiple network elements - speeding time-to-market, saving money, and freeing up key resources to focus on competitive differentiation.

Equally important, the adoption of standards-based elements enables new and emerging hardware to plug into an existing network infrastructure without extensive retooling and associated costs. It also encourages use of best-of-breed technologies without imposing vendor lock-in. For much of the new hardware being deployed in next generation networking (NGN) infrastructures, the de facto standard is the Advanced Telecommunications Computing Architecture (ATCA). ATCA is a perfect example of a standard that not only promises all the benefits of a COTS solution, but has also reached a point of maturity for wide use in real-world implementations.

Getting standards-based technologies to deliver on their intended promise requires heavy lifting and cooperation. For many industries, such as mobile phones, the proliferation of special interest groups (SIGs) has led to overlap and competing standards, resulting in a splintered, confused industry and delays in standards adoption.

In the communications industry, however, there is significant cooperation between different SIGs. In telecommunications, nearly a dozen SIGs have worked to define the technology components that fit into an overall solution. Some of the most notable SIGs include the Communications Platform-Trade Association (CP-TA), PICMG, the SCOPE Alliance, the Service Availability Forum (SAF) and The Linux Foundation.

Each communication SIG has a specific function and focus: The Linux Foundation focuses on specifications for the Linux OS; PICMG focuses on standards for ATCA hardware; the SAF focuses on middleware above the OS; and the CP-TA focuses on interoperability between different vendor implementations of hardware and software. The SCOPE Alliance does not define any particular standard, but creates desired technology profiles based on Linux Foundation, PICMG, and SAF specifications.

Unlike in many other industries, communications SIGs work closely together. The Carrier Grade Linux (CGL) specification developed by The Linux Foundation includes some standards defined by the SAF and specifies support for ATCA. A loose consortium, the Mountain View Alliance, provides a liaison, marketing and awareness function for all communications SIGs.

What is new in CGL 4.0

CGL 4.0 comprises more than 250 individual requirements covering seven categories, or 'books': Performance, Hardware, Standards, Serviceability, Availability, Security, and Clustering. Each core member of the CGL Working Group (Hewlett-Packard, IBM, Intel, MontaVista, Motorola, NTT, and Wind River) was responsible for updating each book.

The new CGL 4.0 specification also includes useful information and resources for developers. The specific tools and APIs needed for CGL distributions are specified, and proofs of concepts (PoCs) are provided, along with reference code. The PoCs play a critical role, because they refer to existing open-source projects that can be used to implement the CGL requirement. All requirements in the specification must have an associated PoC. In some cases, there may be multiple PoCs or other open-source projects available to meet a requirement. This has a dual impact: First, all distributions registering for CGL 4.0 will have a consistent set of features, with at least one active open-source project supporting it; Second, because there are often many ways to implement a feature, there is room for different distributions to compete and differentiate. This improves the overall quality and choice available to providers implementing CGL.

Carrier Grade Linux: now a Linux Standard Base workgroup

With publication of CGL 4.0 complete, The Linux Foundation is in the process of rechartering the CGL Working Group to fit the foundation's organisational structure. The foundation plans to integrate the CGL specification into the Linux Standard Base (LSB). The LSB delivers interoperability between applications and the Linux OS. Currently, all major distributions comply with the LSB and many leading application vendors - such as MySQL, RealNetworks, and SAP - are certifying. The LSB provides a cost-effective way for vendors to target multiple Linux distributions while building only one software package.

For end users, the LSB and its mark of interoperability preserves choice by allowing them to select the applications and distributions they want, while avoiding technology and vendor lock-in. LSB certification of distributions results in more applications being ported to Linux, and ensures that distribution vendors are compatible with those applications. The LSB ensures that Linux does not fragment.

By adding the CGL specification as a LSB certification or sub-profile, The Linux Foundation will raise the bar even further for the CGL spec, improving its already high level of credibility and value for equipment providers.

Summary: the impact of CGL 4.0

The CGL 4.0 specification has immediate, ongoing benefits for everyone who develops, deploys, and uses Linux-based software for communications-based applications.

* For TEMs and NEPs, a unified, stable specification means faster time-to-market, investment protection, a longer life cycle for network equipment, improved interoperability, a real multi-vendor ecosystem, and streamlined compliance with environmental standards.

* For hardware and software COTS vendors, reduced fragmentation of the ecosystem will motivate application vendors to produce off-the-shelf building-block components consistent with the needs of TEMs and NEPs.

* For service providers, CGL 4.0 means the ability to accelerate service deployment with confidence, knowing the platform is stable and delivers a high level of functionality, performance, and reliability.

* For developers, specifying the right tools and practices for carrier-grade development, along with PoCs and reference code, simplifies and expedites the development process.

* For end customers and end users, the net result is equipment and services that deliver exceptional performance and availability, increased freedom of choice and quality of services, and a seamless user experience.

For more information contact Andrew Palmer, Embedded Industrial Solutions, +27 (0)12 547 6071.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

What does Wi-Fi 7 mean for South African networks?
Telecoms, Datacoms, Wireless, IoT
With Wi-Fi 7 (802.11be), we are finally looking at a standard that was built, not just for more devices, but for the new way networks are used.

Read more...
Multiprotocol wireless SoC
RF Design Telecoms, Datacoms, Wireless, IoT
The nRF54LM20A from Nordic Semiconductor is a multiprotocol wireless System-on-Chip designed for demanding designs in Bluetooth devices.

Read more...
High performance communication
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Quectel’s FCS950R is a high-performance Wi-Fi 5 and Bluetooth 4.2 module that can deliver a maximum data rate up to 433,3 Mbps in 802.11ac mode.

Read more...
Expanded STM32WL3x line for IoT sensors
Altron Arrow Telecoms, Datacoms, Wireless, IoT
The STM32WL31x and STM32WL30x are more tailored versions of the STM32WL33x for designers who wish to focus on specific features, while lowering their bill of materials.

Read more...
Full-band GNSS helical antenna
RF Design Telecoms, Datacoms, Wireless, IoT
A key feature of Calian’s HC3990XF antenna design is that it does not require a ground plane, making it ideal for size-constrained applications.

Read more...
BLE and BT Mesh module
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
The HM-BT4531 from HOPERF is a BLE data transmission module that features an ARM Cortex-M0 32-bit processor.

Read more...
Espressif entering the Wi-Fi 6E market
iCorp Technologies Telecoms, Datacoms, Wireless, IoT
Espressif Systems is entering the Wi-Fi 6E market, extending its connectivity portfolio into the domain of high-throughput, low-latency wireless solutions.

Read more...
Ultra-low jitter clock buffers
Altron Arrow Telecoms, Datacoms, Wireless, IoT
New SKY53510/80/40 family of clock fanout buffers from Skyworks are purpose-built for data centres, wireless networks, and PCIe Gen 7 applications.

Read more...
Cutting-edge broadband power amplifier
RFiber Solutions Telecoms, Datacoms, Wireless, IoT
Designed for high efficiency and reliability, the WPGM0206012M from WAVEPIA is a cutting-edge broadband GaN MMIC power amplifier operating from 500 MHz to 8,5 GHz.

Read more...
The trends driving uptake of IoT Platform as a Service
Trinity IoT Editor's Choice Telecoms, Datacoms, Wireless, IoT
IoT platforms, delivered as a service, are the key that will enable enterprises to leverage a number of growing trends within the IT space, and access a range of benefits that will help them grow their businesses.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved