News


Researchers increase efficiency of fuel cells

28 April 2010 News

Fuel cells are promising energy devices that are currently under much development. Direct methanol fuel cells are an example of promising technology in this field.

Instead of using hydrogen, direct methanol fuel cells use methanol as fuel. They therefore offer a potential technology for portable consumer electronics applications. Mass commercialisation of the fuel cells has not been realised due to technological limitations of the technology. The challenges with direct methanol fuel cells include methanol crossover that limits the efficiency of the fuel cell and the use of expensive platinum catalysts on the electrodes. Reducing or eliminating the use of platinum has therefore been a major research theme.

One of the research groups working on this challenge is the Massachusetts Institute of Technology (MIT). The MIT researchers, working together with researchers from the Brookhaven National Laboratory and the Japan Institute of Science and Technology, found a way to lower the usage of platinum in direct methanol fuel cells by significantly increasing the efficiency of the fuel cell electrodes. Other previous developments to reduce platinum usage include replacing the fixed platinum catalysts on the cathode with a liquid regenerating catalyst system called catholyte solution.

In the MIT research, platinum nanoparticles were deposited on the surface of multiwall carbon nanotubes. The researchers discovered that the key for the efficiency increase is in the surface texture of the electrode material and not the size of the particle as previously thought. Multiple tiny step-like shapes are crated on the surface instead of leaving the surface smooth and in doing so, double the amount of electricity. The researchers found that the surface steps on the platinum nanoparticles correlate with the electrochemical activity and stability, which can be over hundreds of cycles. The activity of carbon monoxide and methanol electro-oxidation were enhanced with the step surface. The researchers reported that increasing surface steps on the platinum nanoparticles of around 2 nm leads to enhanced activity of up to about 200% for electro-oxidation of methanol.

The researchers believe that further development of the surface structure will produce greater electric current. With a given amount of platinum, much greater electric current can be produced. Understanding the mechanism of how this works can lead to the development of fuel cells that have lower amount of platinum in the fuel cells. The researchers are working on creating more surface steps to further increase the activity of the electrode. The team also hopes to understand whether the steps can enhance the oxygen reduction part of the process that takes place in the other side of a fuel cell.

For more information contact Patrick Cairns, Frost & Sullivan, +27 (0)18 464 2402, [email protected], www.frost.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor’s desk: Windows 10’s end of support arrives bringing industrial risks
Technews Publishing News
By the time you read this column, support for non-LTSC editions of Windows 10 will have ended, officially having their last day on 14 October 2025. This means no more security patches, feature updates, ...

Read more...
Electronic News Digest
News
A brief synopsis of current global news relating to the electronic engineering fields with regards to company finances, general company news, and engineering technologies.

Read more...
Correction: Marijana Abt, Rebound Electronics
News
      In the August issue of Dataweek magazine, the article titled ‘Celebrating innovation, leadership, and the next generation’ featured Marijana Abt, senior account manager at Rebound Electronics. Owing ...

Read more...
Trasna and RF Design announce distribution agreement
RF Design News
Trasna and RF Design have announced a strategic distribution agreement for cellular IoT solutions which will ensure seamless availability of Trasna’s cellular connectivity solutions.

Read more...
Local partnership puts demand-side management to work in South Africa
News
Sensor Networks has partnered with European demand-side management specialist ThermoVault to bring advanced load-shifting capabilities to one of the country’s biggest energy consumers: the household geyser.

Read more...
Hisense SA launches year-long learnership programme for youth
News
Hisense SA’s manufacturing plant in Atlantis recently welcomed 100 young people from the local community, to embark on a year-long learnership and skills development programme.

Read more...
Comtest hosts channel partners
Comtest News
Comtest, together with FLUKE, recently set the stage for an unforgettable afternoon as they welcomed over 80 Channel Partners to their annual celebration of excellence.

Read more...
RS South Africa and Qhubeka empower learners through the gift of mobility
RS South Africa News
Through its bicycle donation initiative, 354 bicycles have been distributed to date, empowering students to access education more easily by reducing the physical and economic barriers posed by long daily commutes.

Read more...
Deca and SST announce strategic collaboration
News
The collaboration provides customers with a modular, memory-centric foundation for advanced multi-die architectures.

Read more...
Specialised Exhibitions transitions to new name: Montgomery Group Africa
News
As part of a strategic move to streamline operations, strengthen regional alignment, and support long-term growth, Specialised Exhibitions has transitioned to a new name: Montgomery Group Africa.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved