News


Another material shows potential as successor to silicon

8 October 2014 News

The twists and turns keep coming in the quest to find the material that will succeed silicon as the basis for the next generation of semiconductors, as the push continues to keep pace with Moore’s Law, which has consistently shown an uncanny ability to predict (or in certain respects pre-empt) the rate of development in electronics technologies.

Just weeks after Dataweek reported on the latest breakthrough in graphene development, news comes that another material is showing promise as competition to graphene.

An international collaboration of researchers led by a scientist with the US Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab) has reported the first experimental observation of ultrafast charge transfer in photo-excited, two-dimensional semiconductors known as MX2 materials. The recorded charge transfer time clocked in at under 50 femtoseconds, comparable to the fastest times recorded for organic photovoltaics.

Illustration of a MoS<sub>2</sub>/WS<sub>2</sub> heterostructure with a MoS<sub>2</sub> monolayer lying on top of a WS<sub>2</sub> monolayer. Electrons and holes created by light are shown to separate into different layers.
Illustration of a MoS2/WS2 heterostructure with a MoS2 monolayer lying on top of a WS2 monolayer. Electrons and holes created by light are shown to separate into different layers.

“We’ve demonstrated, for the first time, efficient charge transfer in MX2 heterostructures through combined photoluminescence mapping and transient absorption measurements,” says Feng Wang, a condensed matter physicist with Berkeley Lab’s materials sciences division and the University of California (UC) Berkeley’s physics department.

“Having quantitatively determined charge transfer time to be less than 50 femtoseconds, our study suggests that MX2 heterostructures, with their remarkable electrical and optical properties and the rapid development of large-area synthesis, hold great promise for future photonic and optoelectronic applications.”

MX2 monolayers consist of a single layer of transition metal atoms, such as molybdenum (Mo) or tungsten (W), sandwiched between two layers of chalcogen atoms, such as sulphur (S). The resulting heterostructure is bound by the relatively weak intermolecular attraction known as the van der Waals force.

These 2D semiconductors feature the same hexagonal ‘honeycombed’ structure as graphene and superfast electrical conductance, but, unlike graphene, they have natural energy band-gaps. This facilitates their application in transistors and other electronic devices because, unlike graphene, their electrical conductance can be switched off.

“Combining different MX2 layers together allows one to control their physical properties,” explains Wang. “For example, the combination of MoS2 and WS2 forms a type-II semiconductor that enables fast charge separation. The separation of photoexcited electrons and holes is essential for driving an electrical current in a photodetector or solar cell.”

In demonstrating the ultrafast charge separation capabilities of atomically thin samples of MoS2/WS2 heterostructures, Wang and his collaborators have opened up potentially rich new avenues, not only for photonics and optoelectronics, but also for photovoltaics.

“MX2 semiconductors have extremely strong optical absorption properties and, compared with organic photovoltaic materials, have a crystalline structure and better electrical transport properties,” Wang says. “Factor in a femtosecond charge transfer rate and MX2 semiconductors provide an ideal way to spatially separate electrons and holes for electrical collection and utilisation.”

Wang and his colleagues are studying the microscopic origins of charge transfer in MX2 heterostructures and the variation in charge transfer rates between different MX2 materials. “We’re also interested in controlling the charge transfer process with external electrical fields as a means of utilising MX2 heterostructures in photovoltaic devices,” Wang concludes.





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

From the editor's desk: Exciting times ahead?
Technews Publishing News
There are many subjects that excite me in this world, but two of the larger technical subjects are, firstly, renewable energy, and secondly, the idea of artificial intelligence as it continues to evolve ...

Read more...
Microchip expands partnership with TSMC
News
Microchip Technology has announced it has expanded its partnership with TSMC to enable a specialised 40 nm manufacturing capacity at Japan Advanced Semiconductor Manufacturing.

Read more...
Huge SA grid battery project
News
A standalone battery energy storage system (BESS) has won preferred bidder status under South Africa’s Energy Storage Capacity Independent Power Producer Procurement Programme (ESIPPPP).

Read more...
Mouser sponsors NCP Cup 2024
News
The NXP Cup is an EMEA-based autonomous car competition, presented by NXP Semiconductors, which is designed to provide students with real-world experiences in autonomous vehicle programming and building.

Read more...
TrinaTracker brings its smart solar tracking to SA
News
The Vanguard 1P is designed to provide customers with trackers that combine suitability for flat terrain, together with outstanding system stability and reliability, quick installation, and flexible external compatibility.

Read more...
Nordex adding 830 MW of wind generation
News
Nordex Energy South Africa will be adding 830 MW of wind energy generation capacity to the company’s already-installed 1 GW base.

Read more...
Invertek produces its three millionth drive
iTek Drives News
Invertek Drives Ltd, a global manufacturer of variable frequency drive (VFD) technology, has celebrated producing its three millionth VFD, just three years after its two-million milestone.

Read more...
Analog Devices’ digital storefront is live
News
Analog Devices has designed an improved digital experience with users in mind – a new analog.com website and eShop.

Read more...
Vicor Powering Innovation podcast
News
The episode explores electrification with Lightning Motorcycles, a company that produces the fastest electric motorcycle on the planet.

Read more...
ModusToolbox Workshop 3
News
This workshop will focus on enabling a PSoC development kit, connected over Wi-Fi and leveraging MQTT, to create the framework of an IoT application.

Read more...