DSP, Micros & Memory


Creating a serial peripheral interface for communications between microprocessors and peripherals

7 November 2001 DSP, Micros & Memory

This article describes how to implement communications between microprocessors and peripherals using the Xilinx CoolRunner XPLA3 CPLDs. The CoolRunner implementation of a serial peripheral interface (SPI) master described here can be used to add an SPI controller to microprocessors or microcontrollers that do not provide this interface.

Serial peripheral interface protocol

SPI is a full-duplex, synchronous, serial data link. A single SPI device is configured as a master; all other SPI devices on the SPI bus are configured as slaves. The SPI bus consists of four wires:

* Serial Clock (SCK) - Driven by the SPI master and regulates the flow of data bits. The SPI specification allows a selection of clock polarity and a choice of two fundamentally different clocking protocols on an 8 bit oriented data transfer.

* Master Out Slave In (MOSI) - Data output from the SPI Master and input to the SPI Slaves.

* Master In Slave Out (MISO) - Data input to the SPI Master and output from the selected SPI Slave. Only one selected slave device can drive data out from its MISO pin.

* Slave Select (SS) - Selects a particular slave via hardware control. Slave devices that are not selected do not interfere with SPI bus activities. The SS control line can be used as an input to the SPI master indicating a multiple-master bus contention (SS_IN). If the SS signal to the master is asserted, it indicates that some other device on the bus is attempting to be a master and address this device as a slave. Assertion of SS automatically disables SPI output drivers in the master device if more than one device attempts to become master.

The SCK, MOSI, and MISO pins of all SPI devices on the SPI bus are connected together in parallel.

Master implementation

This SPI master design supports the following features:

* Microcontroller interface.

* Multimaster bus contention detection and interrupt.

* Eight external slave selects.

* Four transfer protocols available with selectable clock polarity and clock phase.

* SPI transfer complete interrupt.

* Four different bit rates available for SCK.

A high-level block diagram is shown in Figure 1. The microcontroller (µC) interface is a VHDL module that one can easily modify to support other micro-controllers. The address decode/bus Interface logic interprets the bus cycles of the microcontroller and performs the read/write operations to the register file. The register file is the interface between the µC and the SPI master logic, and allows the µC to configure and control the operation of the SPI master.

Status of the current transfer is provided to the µC via a status register in the register file. Registers are also included to contain the µC data to be transmitted on the SPI bus and data received from the SPI bus. The SPI control state machine controls the shifting and loading of SPI data in the SPI shift registers, and the generation of the slave select signals. The SCK clock logic generates an internal SCK based on the settings in the control register for clock phase, division, and polarity.

Figure 1. CoolRunner SPI master
Figure 1. CoolRunner SPI master

Conclusion

CoolRunner CPLDs operate at the lowest standby power (<100 µA) of any CPLD available today, and they are an ideal programmable logic solution for providing interface controllers in portable or power sensitive applications. See www.xilinx.com/apps/epld.htm#CoolRunner for an SPI reference design and detailed application note (XAPP348), VHDL source code, and VHDL testbenches.

For further information contact Avnet Kopp, (011) 444 2333, sales@avnet.co.za or www.avnet.co.za





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

KIOXIA pioneer new 3D Flash technology
EBV Electrolink DSP, Micros & Memory
KIOXIA Corporation and Sandisk Corporation pioneered a state-of-the-art 3D flash memory technology, setting the industry benchmark with a 4,8 Gb/s NAND interface speed, superior power efficiency, and heightened density.

Read more...
Ultra-wide signal capture from a single chip
RFiber Solutions DSP, Micros & Memory
Jariet Technologies developed Electra, a chipset that enables ultra-wide, multi-function and multi-band signal capture and generation from a single component.

Read more...
High-performance processing at the edge
Altron Arrow DSP, Micros & Memory
STMicroelectronics’ STM32MP23 microprocessor is designed to meet the demands of industrial, IoT, and edge AI applications.

Read more...
High-speed Flash for system-on-chip applications
NuVision Electronics DSP, Micros & Memory
GigaDevice unveiled the GD25NE series of dual-power supply SPI NOR Flash chips, designed specifically for 1,2 V SoC applications.

Read more...
Ultra-low-power Arm Cortex MCU with FPU
Altron Arrow DSP, Micros & Memory
STMicroelectronics expanded its STM32 ultra-low-power family with the launch of the STM32U3 for cost-sensitive applications in industrial, medical, and consumer electronics devices.

Read more...
Processor with attached NPU
Future Electronics DSP, Micros & Memory
STMicroelectronics expanded its STM32 ultra-low-power family with the launch of the STM32U3 for cost-sensitive applications in industrial, medical, and consumer electronics devices.

Read more...
Powering the future of embedded control
Altron Arrow Editor's Choice DSP, Micros & Memory
As the demand for intelligent, connected, and energy-efficient systems grows, embedded engineers are under pressure to design faster, smarter, and more secure products

Read more...
New RT PolarFire device qualifications
ASIC Design Services DSP, Micros & Memory
Microchip expands space-qualified FPGA portfolio with new RT PolarFire device qualifications and SoC availability.

Read more...
KIOXIA sampling UFS 4.1 embedded Flash
EBV Electrolink DSP, Micros & Memory
The new UFS devices use KIOXIA’s 8th-Gen BiCS FLASH 3D to boost speed and power efficiency.

Read more...
Memory for asset tracking
Altron Arrow DSP, Micros & Memory
The Page EEPROM, ST’s latest memory, has been designed for efficient datalogging and fast firmware upload/download in battery-operated devices.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved